In the present work, we theoretically study characteristics of the nonlinear Seebeck effect in a single-molecule junction with chain-like bridge of an arbitrary length. We have employed tight-binding models to compute the electron transmission through the system. We concentrate on the analysis of dependences of thermovoltage Vth and differential thermopower S on the bridge length. It is shown that Vth becomes stronger and S grows as the bridge lengthens. We discuss the effects of the bridge coupling to the electrodes and of specific characteristics of terminal sites on the bridge on the length-dependent Vth and S, which appear when the system operates beyond the linear response regime.
REFERENCES
1.
C.
Joachim
, J. K.
Gimzewski
, and A.
Aviram
, “Electronics using hybrid-molecular and mono-molecular devices
,” Nature
408
, 541
(2000
).2.
J. C.
Cuevas
and E.
Scheer
, Molecular Electronics: An Introduction to Theory and Experiment
(World Scientific
, Singapore
, 2010
).3.
Y.
Dubi
and M.
Di Ventra
, “Heat flow and thermoelectricity in atomic and molecular junctions
,” Rev. Mod. Phys.
83
, 131
(2011
).4.
N. A.
Zimbovskaya
and M. R.
Pederson
, “Electron transport through molecular junctions
,” Phys. Rep.
509
, 1
(2011
).5.
B.
Sothmann
, D.
Sanchez
, and A. N.
Jordan
, “Thermoelectric energy harvesting with quantum dots
,” Nanotechnology
26
, 032001
(2015
).6.
F.
Giazotto
, T. T.
Heikkila
, A.
Luukanen
, A. M.
Savin
, and J. P.
Pekola
, “Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications
,” Rev. Mod. Phys.
78
, 217
(2006
).7.
B.
Szukiewicz
and K.
Wysokinski
, “Quantum dot as spin current generator and energy harvester
,” Eur. Phys. J. B
88
, 112
(2015
).8.
H.
Sadeghi
, S.
Sangtarash
, and C. J.
Lambert
, “Oligoyne molecular junctions for efficient room temperature thermoelectric power generation
,” Nano Lett.
15
, 7467
(2015
).9.
C. A.
Perroni
, D.
Ninno
, and V.
Cataudella
, “Thermoelectric efficiency of molecular junctions
,” J. Phys.: Condens. Matter
28
, 373001
(2016
).10.
N. A.
Zimbovskaya
, “Seebeck effect in molecular junctions
,” J. Phys.: Condens. Matter
28
, 183002
(2016
).11.
S.
Kruchinin
and T.
Pruschke
, “Thermopower for a molecule with vibrational degrees of freedom
,” Phys. Lett. A
378
, 1157
(2014
).12.
M.
Leijnse
, M. R.
Wegewijs
, and K.
Flensberg
, “Nonlinear thermoelectric properties of molecular junctions with vibrational coupling
,” Phys. Rev. B
82
, 045412
(2010
).13.
L.
Simine
and D.
Segal
, “Vibrational cooling, heating, and instability in molecular conducting junctions: Full counting statistics analysis
,” Phys. Chem. Chem. Phys.
14
, 13820
(2012
).14.
R.
Swirkowicz
, M.
Wilczynski
, and J.
Barnas
, “The Kondo effect in quantum dots coupled to ferromagnetic leads with noncollinear magnetizations: Effects due to electron-phonon coupling
,” J. Phys.: Condens. Matter
20
, 255219
(2008
).15.
B. K.
Agarwalla
, B.
Li
, and J. S.
Wang
, “Full-counting statistics of heat transport in harmonic junctions: Transient, steady states, and fluctuation theorems
,” Phys. Rev. E
85
, 051142
(2012
).16.
M.
Galperin
, M. A.
Ratner
, and A.
Nitzan
, “Inelastic effects in molecular junction transport: Scattering and self-consistent calculations for the Seebeck coefficient
,” Mol. Phys.
106
, 397
(2008
).17.
N. A.
Zimbovskaya
, “Nonlinear thermoelectric transport in single-molecule junctions: The effect of electron-phonon interactions
,” J. Phys.: Condens. Matter
28
, 295301
(2016
).18.
F.
Pauly
, J. K.
Viljas
, and J. C.
Cuevas
, “Length-dependent conductance and thermopower in single-molecule junctions of dithiolated oligophenylene derivatives: A density functional study,
,” Phys. Rev. B
78
, 035315
(2008
).19.
C. M.
Finch
, V. M.
Garcia-Suarez
, and C. J.
Lambert
, “Giant thermopower and figure of merit in single-molecule devices
,” Phys. Rev. B
79
, 033405
(2009
).20.
A.
Tan
, J.
Balachandran
, S.
Sadat
, V.
Gavini
, B. D.
Dunietz
, S.-Y.
Jang
, and P.
Reddy
, “Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions
,” J. Am. Chem. Soc.
133
, 8838
(2011
).21.
M.
Tsutsui
, K.
Yokota
, T.
Morikawa
, and M.
Taniguchi
, “Roles of vacuum tunnelling and contact mechanics in single-molecule thermopower
,” Sci. Rep.
7
, 44276
(2017
).22.
Z.
Golsanamlou
, S. I.
Vishkayi
, M. B.
Tagani
, and H. R.
Soleimani
, “Thermoelectric properties of metal/molecule/metal junction for different lengths of polythiophene
,” Chem. Phys. Lett.
594
, 51
(2014
).23.
P.
Murphy
, S.
Mukerjee
, and J.
Moore
, “Optimal thermoelectric figure of merit of a molecular junction
,” Phys. Rev. B
78
, 161406
(2008
).24.
B.
Kubala
, J.
Konig
, and J.
Pekola
, “Violation of the Wiedemann-Franz law in a single-electron transistor
,” Phys. Rev. Lett.
100
, 066801
(2008
).25.
D.
Nozaki
, H.
Sevincli
, W.
Li
, R.
Gutierrez
, and G.
Cuniberti
, “Engineering the figure of merit and thermopower in single-molecule devices connected to semiconducting electrodes
,” Phys. Rev. B
81
, 235406
(2010
).26.
A. L.
Monteros
, G. S.
Uppal
, S. R.
McMillan
, M.
Crisan
, and I.
Tifrea
, “Thermoelectric transport properties of a T-shaped double quantum dot system in the Coulomb blockade regime
,” Euro. Phys. J. B
87
, 50656
(2014
).27.
J.
Azema
, A.-M.
Dare
, S.
Schafer
, and P.
Lombardo
, “Kondo physics and orbital degeneracy interact to boost thermoelectrics on the nanoscale
,” Phys. Rev. B
86
, 075303
(2012
).28.
N. A.
Zimbovskaya
, “The effect of Coulomb interactions on thermoelectric properties of quantum dots
,” J. Chem. Phys.
140
, 104706
(2014
).29.
Y.
Yan
, H.
Wu
, F.
Jiang
, and H.
Zhao
, “Electron interaction effects on the thermoelectric power of a quantum dot at T > TK
,” Euro. Phys. J. B
87
, 244
(2014
).30.
M. A.
Sierra
, M.
Saiz-Bretin
, F.
Dominguez-Adame
, and D.
Sanchez
, “Interactions and thermoelectric effects in a parallel-coupled double quantum dot
,” Phys. Rev. B
93
, 235452
(2016
).31.
N. R.
Abdullah
, C. S.
Tang
, A.
Manolescu
, and V.
Gudmundsson
, “Cavity-photon controlled thermoelectric transport through a quantum wire
,” ACS Photonics
3
, 249
(2016
).32.
M.
Wierzbicki
and R.
Swirkowicz
, “Electric and thermoelectric phenomena in a multilevel quantum dot attached to ferromagnetic electrodes
,” Phys. Rev. B
82
, 165334
(2010
).33.
R.
Swirkowicz
, M.
Wierzbicki
, and J.
Barnas
, “Thermoelectric effects in transport through quantum dots attached to ferromagnetic leads with noncollinear magnetic moments
,” Phys. Rev. B
80
, 195409
(2009
).34.
L.
Karwacki
and P.
Trocha
, “Spin-dependent thermoelectric effects in a strongly correlated double quantum dot
,” Phys. Rev. B
94
, 085418
(2016
).35.
L.
Xu
, Z.-J.
Li
, P.
Niu
, and Y.-H.
Nie
, “Nonequilibrium spin-polarized thermal transport in ferromagnetic quantum dotmetal system
,” Phys. Lett. A
42
, 3553
(2016
).36.
M. B.
Tagani
and H. R.
Soleimani
, “Thermoelectric effects in a quantum dot coupled to ferromagnetic leads and subject to microwave fields
,” J. Appl. Phys.
113
, 143709
(2013
).37.
R.
Hartle
and M.
Thoss
, “Vibrational instabilities in resonant electron transport through single-molecule junctions
,” Phys. Rev. B
83
, 125419
(2011
).38.
G. T.
Craven
and A.
Nitzan
, “Electron transfer at thermally heterogeneous molecule-metal interfaces
,” J. Chem. Phys.
146
, 092305
(2017
).39.
J.
Arguello-Luengo
, D.
Sanchez
, and R.
Lopez
, “Heat asymmetries in nanoscale conductors: The role of decoherence and inelasticity
,” Phys. Rev. B
91
, 165431
(2015
).40.
N. A.
Zimbovskaya
, “The effect of dephasing on the thermoelectric efficiency of molecular junctions
,” J. Phys.: Condens. Matter
26
, 275303
(2014
).41.
N. A.
Zimbovskaya
, “Scattering theory of thermocurrent in quantum dots and molecules
,” Phys. E
74
, 213
(2015
).42.
B.
De
and B.
Muralidharan
, “Thermoelectric study of dissipative quantum-dot heat engines
,” Phys. Rev. B
94
, 165416
(2016
).43.
P.
Trocha
and J.
Barnas
, “Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena
,” Phys. Rev. B
85
, 085408
(2012
).44.
L.
Simine
, W. J.
Chen
, and D.
Segal
, “Can the Seebeck coefficient identify quantum interference in molecular conduction?
,” J. Phys. Chem. C
119
, 12097
(2015
).45.
P.
Reddy
, S. Y.
Jang
, R. A.
Segalman
, and A.
Majumdar
, “Thermoelectricity in molecular junctions
,” Science
315
, 1568
(2007
).46.
J. A.
Malen
, P.
Doak
, K.
Baheti
, T. D.
Tilley
, R. A.
Segalman
, and A.
Majumdar
, “Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions
,” Nano Lett.
9
, 1164
(2009
).47.
S. Y.
Quek
, H. J.
Choi
, S. G.
Louie
, and J. B.
Neaton
, “Length dependence of conductance in aromatic single-molecule junctions
,” Nano Lett.
9
, 3949
(2009
).48.
S. Y.
Quek
, H. J.
Choi
, S. G.
Louie
, and J. B.
Neaton
, “Thermopower of amine−gold-linked aromatic molecular junctions from first principles
,” ACS Nano
5
, 551
(2011
).49.
A.
Mishchenko
, D.
Vonlanthen
, V.
Meded
, M.
Burkle
, C.
Li
, I. V.
Pobelov
, A. I.
Bagrets
, J. K.
Viljas
, F.
Pauly
, F.
Evers
, M.
Mayor
, and T.
Wandlowski
, “Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts
,” Nano Lett.
10
, 156
(2010
).50.
J. R.
Widawsky
, W.
Chen
, H.
Vazquez
, T.
Kim
, R.
Breslow
, M. S.
Hybertsen
, and L.
Venkataraman
, “Length-dependent thermopower of highly conducting AuC bonded single molecule junctions
,” Nano Lett.
13
, 2889
(2013
).51.
Y.-H.
Wang
, X.-Y.
Zhou
, Y.-Y.
Sun
, D.
Han
, J.-F.
Zheng
, Z.-J.
Niu
, and X.-S.
Zhou
, “Conductance measurement of carboxylic acids binding to palladium nanoclusters by electrochemical jump-to-contact STM break junction
,” Electrochim. Acta
123
, 205
(2014
).52.
R. X.
Li
, Y.
Ni
, H. D.
Li
, X. L.
Tian
, K. L.
Yao
, and H. H.
Fu
, “Thermoelectric transport through a zigzag like chain: Influence of the chain length, the interdot tunneling and the intradot Coulomb interaction
,” Phys. B
493
, 1
(2016
).53.
N. A.
Zimbovskaya
, “Communication: Length-dependent thermopower of single-molecule junctions
,” J. Chem. Phys.
145
, 221101
(2016
).54.
S. F.
Svensson
, E. A.
Hoffmann
, N.
Nakpathomkun
, P. M.
Wu
, H. Q.
Xu
, H. A.
Nilsson
, D.
Sanchez
, V.
Kashcheyevs
, and H.
Linke
, “Nonlinear thermovoltage and thermocurrent in quantum dots
,” New J. Phys.
15
, 105011
(2013
).55.
Y.
Dubi
and M.
Di Ventra
, “Thermoelectric effects in nanoscale junctions
,” Nano Lett.
9
, 97
(2009
).56.
R. S.
Whitney
, “Nonlinear thermoelectricity in point contacts at pinch off: A catastrophe aids cooling,
,” Phys. Rev. B
88
, 064302
(2013
).57.
M. A.
Sierra
and D.
Sanchez
, “Strongly nonlinear thermovoltage and heat dissipation in interacting quantum dots
,” Phys. Rev. B
90
, 115313
(2014
).58.
J.
Azema
, P.
Lombardo
, and A.-M.
Dare
, “Conditions for requiring nonlinear thermoelectric transport theory in nanodevices
,” Phys. Rev. B
90
, 205437
(2014
).59.
D.
Sanchez
and R.
Lopez
, “Scattering theory of nonlinear thermoelectric transport
,” Phys. Rev. Lett.
110
, 026804
(2013
).60.
R.
Lopez
and D.
Sanchez
, “Nonlinear heat transport in mesoscopic conductors: Rectification, Peltier effect, and Wiedemann-Franz law
,” Phys. Rev. B
88
, 045129
(2013
).61.
N. A.
Zimbovskaya
, “The effect of Coulomb interactions on nonlinear thermovoltage and thermocurrent in quantum dots
,” J. Chem. Phys.
142
, 244310
(2015
).62.
D.
Sanchez
and R.
Lopez
, “Nonlinear phenomena in quantum thermoelectrics and heat
,” C. R. Phys.
17
, 1060
(2016
).63.
D.
Nozaki
, H. M.
Pastawski
, and G.
Cuniberti
, “Controlling the conductance of molecular wires by defect engineering New
,” New J. Phys.
12
, 063004
(2010
).64.
V.
Mujica
, M.
Kemp
, and M. A.
Ratner
, “Electron conduction in molecular wires. I. A scattering formalism
,” J. Chem. Phys.
101
, 6849
(1994
).65.
J. L.
d’Amato
and H. M.
Pastawski
, “Conductance of a disordered linear chain including inelastic scattering events
,” Phys. Rev. B
41
, 7411
(1990
).66.
J.
Fransson
and M.
Galperin
, “Spin Seebeck coefficient of a molecular spin pump
,” Phys. Chem. Chem. Phys.
13
, 14350
(2011
).© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.