In the present work, we theoretically study characteristics of the nonlinear Seebeck effect in a single-molecule junction with chain-like bridge of an arbitrary length. We have employed tight-binding models to compute the electron transmission through the system. We concentrate on the analysis of dependences of thermovoltage Vth and differential thermopower S on the bridge length. It is shown that Vth becomes stronger and S grows as the bridge lengthens. We discuss the effects of the bridge coupling to the electrodes and of specific characteristics of terminal sites on the bridge on the length-dependent Vth and S, which appear when the system operates beyond the linear response regime.
© 2017 Author(s).
2017
Author(s)
You do not currently have access to this content.