Antimicrobial peptides (AMPs) inactivate microorganisms by forming transmembrane pores in a cell membrane through adsorption and aggregation. Energetics of addition of an AMP to a transmembrane pore is important for evaluation of its formation and growth. Such information is essential for the characterization of pore forming ability of peptides in cell membranes. This study quantifies the potential of mean force through molecular dynamics (MD) simulation for the addition of melittin, a naturally occurring AMP, into a DOPC/DOPG mixed bilayer, a mimic of bacterial membrane, for different extents of insertion into either a bilayer or a pore consisting of three to six transmembrane peptides. The energy barrier for insertion of a melittin molecule into the bilayer was highest in the absence of transmembrane peptides and decreased for the number of transmembrane peptides from three to six, eventually approaching zero. The decrease in free energy for complete insertion of peptide was found to be higher for larger pore size. Water channel formation occurred only for insertion into pores consisting of three or more transmembrane peptides with the radius of water channel being larger for a larger number of transmembrane peptides. The structure of the pore was found to be paraboloid. The estimated free energy barrier for insertion of melittin into an ideal paraboloid pore accounting for different intermolecular interactions was consistent with MD simulation results. The results reported in this manuscript will be useful for the development of a model for nucleation of pores and a rational methodology for selection of synthetic antimicrobial peptides.

1.
G.
Kaufman
, “
Antibiotics: Mode of action and mechanisms of resistance
,”
Nurs. Stand.
25
(
42
),
49
55
(
2011
).
2.
A.
Tossi
,
C.
Tarantino
, and
D.
Romeo
, “
Design of synthetic antimicrobial peptides based on sequence analogy and amphipathicity
,”
Eur. J. Biochem.
250
(
2
),
549
558
(
1997
).
3.
H.
Hirt
and
S.-U.
Gorr
, “
Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa
,”
Antimicrob. Agents Chemother.
57
(
10
),
4903
4910
(
2013
).
4.
K.-i.
Okuda
,
T.
Zendo
,
S.
Sugimoto
,
T.
Iwase
,
A.
Tajima
,
S.
Yamada
,
K.
Sonomoto
, and
Y.
Mizunoe
, “
Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm
,”
Antimicrob. Agents Chemother.
57
(
11
),
5572
5579
(
2013
).
5.
M.
Zasloff
, “
Antimicrobial peptides of multicellular organisms
,”
Nature
415
(
6870
),
389
395
(
2002
).
6.
L.
Yang
,
T. A.
Harroun
,
T. M.
Weiss
,
L.
Ding
, and
H. W.
Huang
, “
Barrel-stave model or toroidal model? A case study on melittin pores
,”
Biophys. J.
81
(
3
),
1475
1485
(
2001
).
7.
M.-T.
Lee
,
F.-Y.
Chen
, and
H. W.
Huang
, “
Energetics of pore formation induced by membrane active peptides
,”
Biochemistry
43
(
12
),
3590
3599
(
2004
).
8.
K.
Matsuzaki
,
S.
Yoneyama
, and
K.
Miyajima
, “
Pore formation and translocation of melittin
,”
Biophys. J.
73
(
2
),
831
(
1997
).
9.
J. H.
Lin
and
A.
Baumgaertner
, “
Stability of a melittin pore in a lipid bilayer: A molecular dynamics study
,”
Biophys. J.
78
(
4
),
1714
1724
(
2000
).
10.
S. J.
Ludtke
,
K.
He
,
W. T.
Heller
,
T. A.
Harroun
,
L.
Yang
, and
H. W.
Huang
, “
Membrane pores induced by magainin
,”
Biochemistry
35
(
43
),
13723
13728
(
1996
).
11.
K.
Matsuzaki
,
O.
Murase
,
N.
Fujii
, and
K.
Miyajima
, “
An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation
,”
Biochemistry
35
(
35
),
11361
11368
(
1996
).
12.
J. D.
Harper
,
S. S.
Wong
,
C. M.
Lieber
, and
P. T.
Lansbury
, Jr.
, “
Assembly of a beta amyloid protofibrils: An in vitro model for a possible early event in Alzheimer’s disease
,”
Biochemistry
38
(
28
),
8972
8980
(
1999
).
13.
N.
Arispe
,
H. B.
Pollard
, and
E.
Rojas
, “
Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes
,”
Proc. Natl. Acad. Sci. U. S. A.
90
(
22
),
10573
10577
(
1993
).
14.
M.
Stefani
and
C. M.
Dobson
, “
Protein aggregation and aggregate toxicity: New insights into protein folding, misfolding diseases and biological evolution
,”
J. Mol. Med.
81
(
11
),
678
699
(
2003
).
15.
S. J.
Soscia
,
J. E.
Kirby
,
K. J.
Washicosky
,
S. M.
Tucker
,
M.
Ingelsson
,
B.
Hyman
,
M. A.
Burton
,
L. E.
Goldstein
,
S.
Duong
,
R. E.
Tanzi
, and
R. D.
Moir
, “
The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide
,”
PLoS ONE
5
(
3
),
e9505
(
2010
).
16.
M.
Stefani
, “
Protein misfolding and aggregation: New examples in medicine and biology of the dark side of the protein world
,”
Biochim. Biophys. Acta, Mol. Basis Dis.
1739
(
1
),
5
25
(
2004
).
17.
M.-T.
Lee
,
T.-L.
Sun
,
W.-C.
Hung
, and
H. W.
Huang
, “
Process of inducing pores in membranes by melittin
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
35
),
14243
14248
(
2013
).
18.
C.
Subbalakshmi
,
R.
Nagaraj
, and
N.
Sitaram
, “
Biological activities of C-terminal 15-residue synthetic fragment of melittin: Design of an analog with improved antibacterial activity
,”
FEBS Lett.
448
(
1
),
62
66
(
1999
).
19.
C. R.
Dawson
,
A. F.
Drake
,
J.
Helliwell
, and
R. C.
Hider
, “
The interaction of bee melittin with lipid bilayer membranes
,”
Biochim. Biophys. Acta-Biomembr.
510
(
1
),
75
86
(
1978
).
20.
A. F.
Drake
and
R. C.
Hider
, “
The structure of melittin in lipid bilayer membranes
,”
Biochim. Biophys. Acta-Biomembr.
555
(
2
),
371
373
(
1979
).
21.
M. T.
Tosteson
and
D. C.
Tosteson
, “
The sting. Melittin forms channels in lipid bilayers
,”
Biophys. J.
36
(
1
),
109
116
(
1981
).
22.
M.
Dathe
and
T.
Wieprecht
, “
Structural features of helical antimicrobial peptides: Their potential to modulate activity on model membranes and biological cells
,”
Biochim. Biophys. Acta-Biomembr.
1462
(
1-2
),
71
87
(
1999
).
23.
K.
Hristova
,
C. E.
Dempsey
, and
S. H.
White
, “
Structure, location, and lipid perturbations of melittin at the membrane interface
,”
Biophys. J.
80
(
2
),
801
811
(
2001
).
24.
H.
Raghuraman
and
A.
Chattopadhyay
, “
Orientation and dynamics of melittin in membranes of varying composition utilizing NBD fluorescence
,”
Biophys. J.
92
(
4
),
1271
1283
(
2007
).
25.
S.
Berneche
,
M.
Nina
, and
B.
Roux
, “
Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane
,”
Biophys. J.
75
(
4
),
1603
1618
(
1998
).
26.
W.
Soliman
,
S.
Bhattacharjee
, and
K.
Kaur
, “
Interaction of an antimicrobial peptide with a model lipid bilayer using molecular dynamics simulation
,”
Langmuir
25
(
12
),
6591
6595
(
2009
).
27.
M.
Manna
and
C.
Mukhopadhyay
, “
Molecular dynamics simulations of the interactions of kinin peptides with an anionic POPG bilayer
,”
Langmuir
27
(
7
),
3713
3722
(
2011
).
28.
L.
Shi
,
A.
Cembran
,
J.
Gao
, and
G.
Veglia
, “
Tilt and azimuthal angles of a transmembrane peptide: A comparison between molecular dynamics calculations and solid-state NMR data of sarcolipin in lipid membranes
,”
Biophys. J.
96
(
9
),
3648
3662
(
2009
).
29.
S.
Dorairaj
and
T. W.
Allen
, “
On the thermodynamic stability of a charged arginine side chain in a transmembrane helix
,”
Proc. Natl. Acad. Sci. U. S. A.
104
(
12
),
4943
4948
(
2007
).
30.
L. R.
Brown
,
J.
Lauterwein
, and
K.
Wüthrich
, “
High-resolution 1 H-NMR studies of self-aggregation of melittin in aqueous solution
,”
Biochim. Biophys. Acta-Protein Struct.
622
(
2
),
231
244
(
1980
).
31.
T. C.
Terwilliger
and
D.
Eisenberg
, “
The structure of melittin. I. Structure determination and partial refinement
,”
J. Biol. Chem.
257
(
11
),
6010
6015
(
1982
).
32.
A. J.
Weaver
,
M. D.
Kemple
, and
F. G.
Prendergast
, “
Characterization of selectively carbon-13-labeled synthetic melittin and melittin analogs in isotropic solvents by circular dichroism, fluorescence, and NMR spectroscopy
,”
Biochemistry
28
(
21
),
8614
8623
(
1989
).
33.
M.
Andersson
,
J. P.
Ulmschneider
,
M. B.
Ulmschneider
, and
S. H.
White
, “
Conformational states of melittin at a bilayer interface
,”
Biophys. J.
104
(
6
),
L12
L14
(
2013
).
34.
C.
Liao
,
M.
Esai Selvan
,
J.
Zhao
,
J. L.
Slimovitch
,
S. T.
Schneebeli
,
M.
Shelley
,
J. C.
Shelley
, and
J.
Li
, “
Melittin aggregation in aqueous solutions: Insight from molecular dynamics simulations
,”
J. Phys. Chem. B
119
(
33
),
10390
10398
(
2015
).
35.
S. J.
Irudayam
and
M. L.
Berkowitz
, “
Binding and reorientation of melittin in a POPC bilayer: Computer simulations
,”
Biochim. Biophys. Acta-Biomembr.
1818
(
12
),
2975
2981
(
2012
).
36.
S.
Tanizaki
,
J.
Clifford
,
B. D.
Connelly
, and
M.
Feig
, “
Conformational sampling of peptides in cellular environments
,”
Biophys. J.
94
(
3
),
747
759
(
2008
).
37.
Y.
Lyu
,
X.
Zhu
,
N.
Xiang
, and
G.
Narsimhan
, “
Molecular dynamics study of pore formation by melittin in a 1, 2-Dioleoyl-sn-glycero-3-phosphocholine and 1, 2-di (9 z-octadecenoyl)-sn-glycero-3-phospho-(1′-rac-glycerol) mixed lipid bilayer
,”
Ind. Eng. Chem. Res.
54
(
42
),
10275
10283
(
2015
).
38.
K. P.
Santo
and
M. L.
Berkowitz
, “
Difference between magainin-2 and melittin assemblies in phosphatidylcholine bilayers: Results from coarse-grained simulations
,”
J. Phys. Chem. B
116
(
9
),
3021
3030
(
2012
).
39.
D.
Sun
,
J.
Forsman
, and
C. E.
Woodward
, “
Multistep molecular dynamics simulations identify the highly cooperative activity of melittin in recognizing and stabilizing membrane pores
,”
Langmuir
31
(
34
),
9388
9401
(
2015
).
40.
J. M.
Leveritt
,
A.
Pino-Angeles
, and
T.
Lazaridis
, “
The structure of a melittin-stabilized pore
,”
Biophys. J.
108
(
10
),
2424
2426
(
2015
).
41.
K. P.
Santo
,
S. J.
Irudayam
, and
M. L.
Berkowitz
, “
Melittin creates transient pores in a lipid bilayer: Results from computer simulations
,”
J. Phys. Chem. B
117
(
17
),
5031
5042
(
2013
).
42.
D.
Sengupta
,
H.
Leontiadou
,
A. E.
Mark
, and
S.-J.
Marrink
, “
Toroidal pores formed by antimicrobial peptides show significant disorder
,”
Biochim. Biophys. Acta, Biomembr.
1778
(
10
),
2308
2317
(
2008
).
43.
M.
Mihajlovic
and
T.
Lazaridis
, “
Antimicrobial peptides in toroidal and cylindrical pores
,”
Biochim. Biophys. Acta, Biomembr.
1798
(
8
),
1485
1493
(
2010
).
44.
A. S.
Ladokhin
and
S. H.
White
, “
Folding of amphipathic α-helices on membranes: Energetics of helix formation by melittin
,”
J. Mol. Biol.
285
(
4
),
1363
1369
(
1999
).
45.
S. J.
Irudayam
,
T.
Pobandt
, and
M. L.
Berkowitz
, “
Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state
,”
J. Phys. Chem. B
117
(
43
),
13457
13463
(
2013
).
46.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
, “
Comparison of simple potential functions for simulating liquid water
,”
J. Chem. Phys.
79
(
2
),
926
935
(
1983
).
47.
D. A.
Case
,
T. E.
Cheatham
 III
,
T.
Darden
,
H.
Gohlke
,
R.
Luo
,
K. M.
Merz
, Jr.
,
A.
Onufriev
,
C.
Simmerling
,
B.
Wang
, and
R. J.
Woods
, “
The Amber biomolecular simulation programs
,”
J. Comput. Chem.
26
(
16
),
1668
1688
(
2005
).
48.
K.
Lindorff-Larsen
,
S.
Piana
,
K.
Palmo
,
P.
Maragakis
,
J. L.
Klepeis
,
R. O.
Dror
, and
D. E.
Shaw
, “
Improved side-chain torsion potentials for the amber ff99SB protein force field
,”
Proteins: Struct., Funct., Bioinf.
78
(
8
),
1950
1958
(
2010
).
49.
A. A.
Skjevik
,
B. D.
Madej
,
R. C.
Walker
, and
K.
Teigen
, “
LIPID11: A modular framework for lipid simulations using amber
,”
J. Phys. Chem. B
116
(
36
),
11124
11136
(
2012
).
50.
A.
Grossfield
,“
Wham: The weighted histogram analysis method
,” Disponıvel em: http://membrane.urmc.rochester.edu/content/wham,
2012
.
51.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
Vmd: Visual molecular dynamics
,”
J. Mol. Graphics
14
(
1
),
33
38
(
1996
).
52.
D. R.
Roe
and
T. E.
Cheatham
 III
, “
PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data
,”
J. Chem. Theory Comput.
9
(
7
),
3084
3095
(
2013
).
53.
W.
Kabsch
and
C.
Sander
, “
Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features
,”
Biopolymers
22
(
12
),
2577
2637
(
1983
).
54.
S. J.
Marrink
,
A. H.
De Vries
, and
A. E.
Mark
, “
Coarse grained model for semiquantitative lipid simulations
,”
J. Phys. Chem. B
108
(
2
),
750
760
(
2004
).
55.
J. L.
MacCallum
,
W. F. D.
Bennett
, and
D. P.
Tieleman
, “
Distribution of amino acids in a lipid bilayer from computer simulations
,”
Biophys. J.
94
(
9
),
3393
3404
(
2008
).
56.
L.
Zhou
,
G.
Narsimhan
,
X.
Wu
, and
F.
Du
, “
Pore formation in 1, 2-dimyristoyl-sn-glycero-3-phosphocholine/cholesterol mixed bilayers by low concentrations of antimicrobial peptide melittin
,”
Colloids Surf., B
123
,
419
428
(
2014
).
57.
X.
Wu
,
A. K.
Singh
,
X.
Wu
,
Y.
Lyu
,
A. K.
Bhunia
, and
G.
Narsimhan
, “
Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants
,”
Colloids Surf., B
143
,
194
205
(
2016
).
58.
Y.
Yang
,
J.
Walz
, and
P.
Pintauro
, “
Curvature effects on electric double-layer forces. Part 1.—Comparisions with parallel geometry
,”
J. Chem. Soc., Faraday Trans.
91
(
17
),
2827
2836
(
1995
).

Supplementary Material

You do not currently have access to this content.