We simulate a semi-flexible active filament that exhibits spontaneous oscillations on clamping and show self-propulsion when left free. The activity on the filament relies on the nano-dimers distributed at regular intervals along the chain. With an emphasis on the spontaneous beating of a clamped filament, we demonstrate that the two competing forces necessary for oscillation are the elastic forces due to polymer rigidity and the active forces due to chemical activity. In addition, we also study the synchronization of two extensile filaments and the role played by non-local hydrodynamic interactions. We observe a phase lock scenario between the filaments during their synchronous motion.

1.
M. C.
Marchetti
,
J. F.
Joanny
,
S.
Ramaswamy
,
T. B.
Liverpool
,
J.
Prost
,
M.
Rao
, and
R. A.
Simha
, “
Hydrodynamics of soft active matter
,”
Rev. Mod. Phys.
85
,
1143
(
2013
).
2.
M. E.
Cates
, “
Diffusive transport without detailed balance in motile bacteria: Does microbiology need statistical physics?
,”
Rep. Prog. Phys.
75
,
042601
(
2012
).
3.
P.
Romanczuk
,
M.
Bär
,
W.
Ebeling
,
B.
Lindner
, and
L.
Schimansky-Geier
, “
Active Brownian particles
,”
Eur. Phys. J.: Spec. Top.
202
(
1
),
1
(
2012
).
4.
I. S.
Aranson
, “
Active colloids
,”
Phys.-Usp.
56
(
1
),
79
(
2013
).
5.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers—Single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
,
056601
(
2015
).
6.
I. D.
Vladescu
,
E. J.
Marsden
,
J.
Schwarz-Linek
,
V. A.
Martinez
,
J.
Arlt
,
A. N.
Morozov
,
D.
Marenduzzo
,
M. E.
Cates
, and
W. C. K.
Poon
, “
Filling an emulsion drop with motile bacteria
,”
Phys. Rev. Lett.
113
,
268101
(
2014
).
7.
H. C.
Berg
,
E. coli in Motion
(
Springer-Verlag
,
New York
,
2004
).
8.
J.
Wang
, “
Can man-made nanomachines compete with nature biomotors?
,”
ACS Nano
3
,
4
(
2009
).
9.
T. E.
Mallouk
and
A.
Sen
, “
Powering nanorobots: Catalytic engines enable tiny swimmers to harness fuel from their environment and overcome the weird physics of the microscopic world
,”
Sci. Am.
300
,
72
(
2009
).
10.
S. J.
Ebbens
and
J. R.
Howse
, “
In pursuit of propulsion at the nanoscale
,”
Soft Matter
6
,
726
(
2010
).
11.
Y.
Mei
,
A. A.
Solovev
,
S.
Sanchez
, and
O. G.
Schmidt
, “
Rolled-up nanotech on polymers: From basic perception to self-propelled catalytic microengines
,”
Chem. Soc. Rev.
40
,
2109
(
2011
).
12.
W. F.
Paxton
,
K. C.
Kistler
,
C. C.
Olmeda
,
A.
Sen
,
S. K.
St. Angelo
,
Y.
Cao
,
T. E.
Mallouk
,
P. E.
Lammert
, and
V. H.
Crespi
, “
Catalytic nanomotors: Autonomous movement of striped nanorods
,”
J. Am. Chem. Soc.
126
,
13424
(
2004
).
13.
W. F.
Paxton
,
A.
Sen
, and
T. E.
Mallouk
, “
Motility of catalytic nanoparticles through self-generated forces
,”
Chem. Eur. J.
11
,
6462
(
2005
).
14.
S.
Fournier-Bidoz
,
A. C.
Arsenault
,
I.
Manners
, and
G. A.
Ozin
, “
Synthetic self-propelled nanorotors
,”
Chem. Commun.
2005
,
441
.
15.
G.
Rückner
and
R.
Kapral
, “
Chemically powered nanodimers
,”
Phys. Rev. Lett.
98
,
150603
(
2007
).
16.
L. F.
Valadares
,
Y.-G.
Tao
,
N. S.
Zacharia
,
V.
Kitaev
,
F.
Galembeck
,
R.
Kapral
, and
G. A.
Ozin
, “
Catalytic nanomotors: Self-propelled sphere dimers
,”
Small
6
,
565
(
2010
).
17.
J. R.
Howse
,
R. A. L.
Jones
,
A. J.
Ryan
,
T.
Gough
,
R.
Vafabakhsh
, and
R.
Golestanian
, “
Self-motile colloidal particles: From directed propulsion to random walk
,”
Phys. Rev. Lett.
99
,
048102
(
2007
).
18.
M. M.
Claessens
,
M.
Bathe
,
E.
Frey
, and
A. R.
Bausch
, “
Actin-binding proteins sensitively mediate f-actin bundle stiffness
,”
Nat. Mater.
5
,
748
(
2006
).
19.
A. W. C.
Lau
,
A.
Prasad
, and
Z.
Dogic
, “
Condensation of isolated semi-flexible filaments driven by depletion interactions
,”
Europhys. Lett.
87
,
48006
(
2009
).
20.
Y.
Sumino
,
K. H.
Nagai
,
Y.
Shitaka
,
D.
Tanaka
,
K.
Yoshikawa
,
H.
Chaté
, and
K.
Oiwa
, “
Large-scale vortex lattice emerging from collectively moving microtubules
,”
Nature
483
,
448
(
2012
).
21.
T.
Sanchez
,
D.
Welch
,
D.
Nicastro
, and
Z.
Dogic
, “
Cilia-like beating of active microtubule bundles
,”
Science
333
(
6041
),
456
(
2011
).
22.
T.
Sanchez
,
D.
Chen
,
S.
DeCamp
,
M.
Heymann
, and
Z.
Dogic
, “
Spontaneous motion in hierarchically assembled active matter
,”
Nature
491
,
431
(
2012
).
23.
Z.
Wu
 et al, “
Self-propelled polymer-based multilayer nanorockets for transportation and drug release
,”
Angew. Chem., Int. Ed.
52
,
7000
(
2013
).
24.
Z.
Wu
 et al, “
Biodegradable protein-based rockets for drug transportation and light-triggered release
,”
ACS Appl. Mater. Interfaces
7
,
250
(
2015
).
25.
N.
Kikuchi
,
A.
Ehrlicher
,
D.
Koch
,
J. A.
Käs
,
S.
Ramaswamy
, and
M.
Rao
, “
Buckling, stiffening, and negative dissipation in the dynamics of a biopolymer in an active medium
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
47
),
19776
(
2009
).
26.
D.
Bray
,
Cell Movements
(
Garland Pub
,
Garland, United States
,
1992
).
27.
C. B.
Lindemann
and
R.
Rikmenspoel
, “
Sperm flagella: Autonomous oscillations of the contractile system
,”
Science
175
(
4019
),
337
(
1972
).
28.
M.
Fujimura
and
M.
Okuno
, “
Sperm flagella: Autonomous oscillations of the contractile system
,”
J. Exp. Biol.
209
,
1336
(
2006
).
29.
Y.
Sasaki
,
Y.
Takikawa
,
V. S. R.
Jampani
,
H.
Hoshikawa
,
T.
Seto
,
C.
Bahr
,
S.
Herminghaus
,
Y.
Hidaka
, and
H.
Orihara
, “
Colloidal caterpillars for cargo transportation
,”
Soft Matter
10
,
8813
(
2014
).
30.
R. E.
Isele-Holder
,
J.
Jager
,
G.
Saggiorato
,
J.
Elgeti
, and
G.
Gompper
, “
Dynamics of self-propelled filaments pushing a load
,”
Soft Matter
12
,
8495
8505
(
2016
).
31.
D.
Sarkar
and
S.
Thakur
, “
Coarse-grained simulations of an active filament propelled by a self-generated solute gradient
,”
Phys. Rev. E
93
,
032508
(
2016
).
32.
R. E.
Isele-Holder
,
J.
Elgeti
, and
G.
Gompper
, “
Self-propelled worm-like filaments: Spontaneous spiral formation, structure, and dynamics
,”
Soft Matter
11
,
7181
(
2015
).
33.
A.
Laskar
,
R.
Singh
,
S.
Ghose
,
G.
Jayaraman
,
P. B.
Sunil Kumar
, and
R.
Adhikari
, “
Hydrodynamic instabilities provide a generic route to spontaneous biomimetic oscillations in chemomechanically active filaments
,”
Sci. Rep.
3
,
1964
(
2013
).
34.
R.
Chelakkot
,
A.
Gopinath
,
L.
Mahadevan
, and
M. F.
Hagan
, “
Flagellar dynamics of a connected chain of active, polar, Brownian particles
,”
J. R. Soc., Interface
11
,
20130884
(
2013
).
35.
G.
Jayaraman
,
S.
Ramachandran
,
S.
Ghose
,
A.
Laskar
,
M.
Saad Bhamla
,
P. B.
Sunil Kumar
, and
R.
Adhikari
, “
Autonomous motility of active filaments due to spontaneous flow-symmetry breaking
,”
Phys. Rev. Lett.
109
,
158302
(
2012
).
36.
J.
Elgeti
and
G.
Gompper
, “
Emergence of metachronal waves in cilia arrays
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
12
),
4470
(
2013
).
37.
D.
Sarkar
,
S.
Thakur
,
Yu-G.
Tao
, and
R.
Kapral
, “
Ring closure dynamics for a chemically active polymer
,”
Soft Matter
10
,
9577
(
2014
).
38.
S.
Thakur
and
R.
Kapral
, “
Collective dynamics of self-propelled sphere-dimer motors
,”
Phys. Rev. E
85
,
026121
(
2012
).
39.
A.
Malevanets
and
R.
Kapral
, “
Mesoscopic model for solvent dynamics
,”
J. Chem. Phys.
110
,
8605
(
1999
).
40.
G.
Gompper
,
T.
Ihle
,
D. M.
Kroll
, and
R. G.
Winkler
, “
Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids
,”
Adv. Polym. Sci.
221
,
1
(
2009
).
41.
T.
Ihle
and
D. M.
Kroll
, “
Stochastic rotation dynamics: A Galilean-invariant mesoscopic model for fluid flow
,”
Phys. Rev. E
63
,
020201
(
2001
).
42.
R.
Kapral
, “
Multiparticle collision dynamics: Simulation of complex systems on mesoscales
,”
Adv. Chem. Phys.
140
,
89
(
2008
).
43.
N.
Kikuchi
,
A.
Gent
, and
J. M.
Yeomans
, “
Polymer collapse in the presence of hydrodynamic interactions
,”
Eur. Phys. J. E
9
,
63
(
2002
).
44.
Yu-G.
Tao
and
R.
Kapral
, “
Design of chemically propelled nanodimer motors
,”
J. Chem. Phys.
128
,
164518
(
2008
).
45.
J. T.
Padding
and
A. A.
Louis
, “
Hydrodynamic interactions and Brownian forces in colloidal suspensions: Coarse-graining over time and length scales
,”
Phys. Rev. E
74
,
031402
(
2006
).
46.
R. G.
Winkler
,
M.
Ripoll
,
K.
Mussawisade
, and
G.
Gompper
, “
Low-Reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics
,”
Eur. Phys. Lett.
68
(
1
),
106
(
2004
).
47.
S.
Gueron
and
K.
Levit-Gurevich
, “
Energetic considerations of ciliary beating and the advantage of metachronal coordination
,”
Proc. Natl. Acad. Sci. U. S. A.
96
,
12240
(
1999
).
48.
Y. W.
Kim
and
R. R.
Netz
, “
Pumping fluids with periodically beating grafted elastic filaments
,”
Phys. Rev. Lett.
96
,
158101
(
2006
).
49.
B.
Qian
,
H.
Jiang
,
D. A.
Gagnon
,
K. S.
Breuer
, and
T. R.
Powers
, “
Minimal model for synchronization induced by hydrodynamic interactions
,”
Phys. Rev. E
80
,
061919
(
2009
).
50.
S.
Yik Reigh
,
R. G.
Winkler
, and
G.
Gompper
, “
Synchronization and bundling of anchored bacterial flagella
,”
Soft Matter
8
,
4363
(
2012
).
51.
S.
Yik Reigh
,
R. G.
Winkler
, and
G.
Gompper
, “
Synchronization, slippage, and unbundling of driven helical flagella
,”
PLoS One
8
(
8
),
e70868
(
2013
).
52.
D. R.
Brumley
,
K. Y.
Wan
,
M.
Polin
, and
R. E.
Goldstein
, “
Flagellar synchronization through direct hydrodynamic interactions
,”
eLife
3
,
e02750
(
2014
).
You do not currently have access to this content.