This paper presents data for supercooled squalane’s frequency-dependent shear modulus covering frequencies from 10 mHz to 30 kHz and temperatures from 168 K to 190 K; measurements are also reported for the glass phase down to 146 K. The data reveal a strong mechanical beta process. A model is proposed for the shear response of the metastable equilibrium liquid phase of supercooled liquids. The model is an electrical equivalent-circuit characterized by additivity of the dynamic shear compliances of the alpha and beta processes. The nontrivial parts of the alpha and beta processes are each represented by a “Cole-Cole retardation element” defined as a series connection of a capacitor and a constant-phase element, resulting in the Cole-Cole compliance function well-known from dielectrics. The model, which assumes that the high-frequency decay of the alpha shear compliance loss varies with the angular frequency as ω1/2, has seven parameters. Assuming time-temperature superposition for the alpha and beta processes separately, the number of parameters varying with temperature is reduced to four. The model provides a better fit to the data than an equally parametrized Havriliak-Negami type model. From the temperature dependence of the best-fit model parameters, the following conclusions are drawn: (1) the alpha relaxation time conforms to the shoving model; (2) the beta relaxation loss-peak frequency is almost temperature independent; (3) the alpha compliance magnitude, which in the model equals the inverse of the instantaneous shear modulus, is only weakly temperature dependent; (4) the beta compliance magnitude decreases by a factor of three upon cooling in the temperature range studied. The final part of the paper briefly presents measurements of the dynamic adiabatic bulk modulus covering frequencies from 10 mHz to 10 kHz in the temperature range from 172 K to 200 K. The data are qualitatively similar to the shear modulus data by having a significant beta process. A single-order-parameter framework is suggested to rationalize these similarities.

1.
G.
Harrison
,
The Dynamic Properties of Supercooled Liquids
(
Academic
,
New York
,
1976
).
2.
S.
Brawer
,
Relaxation in Viscous Liquids and Glasses
(
American Ceramic Society
,
Columbus, OH
,
1985
).
3.
M. D.
Ediger
,
C. A.
Angell
, and
S. R.
Nagel
, “
Supercooled liquids and glasses
,”
J. Phys. Chem.
100
,
13200
13212
(
1996
).
4.
C. A.
Angell
, “
Formation of glasses from liquids and biopolymers
,”
Science
267
,
1924
1935
(
1995
).
5.
J. C.
Dyre
, “
The glass transition and elastic models of glass-forming liquids
,”
Rev. Mod. Phys.
78
,
953
972
(
2006
).
6.
L.
Berthier
and
G.
Biroli
, “
Theoretical perspective on the glass transition and amorphous materials
,”
Rev. Mod. Phys.
83
,
587
645
(
2011
).
7.
G.
Floudas
,
M.
Paluch
,
A.
Grzybowski
, and
K. L.
Ngai
,
Molecular Dynamics of Glass-Forming Systems: Effects of Pressure
(
Springer
,
Berlin
,
2011
).
8.
F. H.
Stillinger
and
P. G.
Debenedetti
, “
Glass transition—Thermodynamics and kinetics
,”
Annu. Rev. Condens. Matter Phys.
4
,
263
285
(
2013
).
9.
R. D.
Deegan
,
R. L.
Leheny
,
N.
Menon
,
S. R.
Nagel
, and
D. C.
Venerus
, “
Dynamic shear modulus of tricresyl phosphate and squalane
,”
J. Phys. Chem. B
103
,
4066
4070
(
1999
).
10.
R.
Richert
,
K.
Duvvuri
, and
L. T.
Duong
, “
Dynamics of glass-forming liquids. VII. Dielectric relaxation of supercooled tris-naphthylbenzene, squalane, and decahydroisoquinoline
,”
J. Chem. Phys.
118
,
1828
1836
(
2003
).
11.
B.
Jakobsen
,
K.
Niss
, and
N. B.
Olsen
, “
Dielectric and shear mechanical alpha and beta relaxations in seven glass-forming liquids
,”
J. Chem. Phys.
123
,
234511
(
2005
).
12.
M. J. P.
Comunas
,
X.
Paredes
,
F. M.
Gacino
,
J.
Fernandez
,
J.-P.
Bazile
,
C.
Boned
,
J. L.
Daridon
,
G.
Galliero
,
J.
Pauly
, and
K. R.
Harris
, “
Viscosity measurements for squalane at high pressures to 350 MPa from T = (293.15 to 363.15) K
,”
J. Chem. Thermodyn.
69
,
201
208
(
2014
).
13.
C. A.
Angell
,
K. L.
Ngai
,
G. B.
McKenna
,
P. F.
McMillan
, and
S. W.
Martin
, “
Relaxation in glassforming liquids and amorphous solids
,”
J. Appl. Phys.
88
,
3113
3157
(
2000
).
14.
“Squalane,” Wikipedia article (2017).
15.
S.
Bair
, “
Reference liquids for quantitative elastohydrodynamics: Selection and rheological characterization
,”
Tribol. Lett.
22
,
197
206
(
2006
).
16.
M. J. P.
Comunas
,
X.
Paredes
,
F. M.
Gacio
,
J.
Fernandez
,
J. P.
Bazile
,
C.
Boned
,
J. L.
Daridon
,
G.
Galliero
,
J.
Pauly
,
K. R.
Harris
,
M. J.
Assael
, and
S. K.
Mylona
, “
Reference correlation of the viscosity of squalane from 273 to 373 K at 0.1 MPa
,”
J. Phys. Chem. Ref. Data
42
,
033101
(
2013
).
17.
H.
Spikes
and
Z.
Jie
, “
History, origins and prediction of elastohydrodynamic friction
,”
Tribol. Lett.
56
,
1
25
(
2014
).
18.
K. A. G.
Schmidt
,
D.
Pagnutti
,
M. D.
Curran
,
A.
Singh
,
J. P.
M. Trusler
,
G. C.
Maitland
, and
M.
McBride-Wright
, “
New experimental data and reference models for the viscosity and density of squalane
,”
J. Chem. Eng. Data
60
,
137
150
(
2015
).
19.
S.
Bair
,
C.
McCabe
, and
P. T.
Cummings
, “
Comparison of nonequilibrium molecular dynamics with experimental measurements in the nonlinear shear-thinning regime
,”
Phys. Rev. Lett.
88
,
058302
(
2002
).
20.
L. M.
Wang
,
S.
Shahriari
, and
R.
Richert
, “
Diluent effects on the Debye-type dielectric relaxation in viscous monohydroxy alcohols
,”
J. Phys. Chem. B
109
,
23255
23262
(
2005
).
21.
B.
Brocklehurst
and
R. N.
Young
, “
Rotation of aromatic hydrocarbons in viscous alkanes. 2. Hindered rotation in squalane
,”
J. Phys. Chem. A
103
,
3818
3824
(
1999
).
22.
B. A.
Kowert
and
M. B.
Watson
, “
Diffusion of organic solutes in squalane
,”
J. Phys. Chem. B
115
,
9687
9694
(
2011
).
23.
M. E.
Saecker
,
S. T.
Govoni
,
D. V.
Kowalski
,
M. E.
King
, and
G. M.
Nathanson
, “
Molecular beam scattering from liquid surfaces
,”
Science
252
,
1421
1424
(
1991
).
24.
S. P. K.
Köhler
,
S. K.
Reed
,
R. E.
Westacott
, and
K. G.
McKendrick
, “
Molecular dynamics study to identify the reactive sites of a liquid squalane surface
,”
J. Phys. Chem. B
110
,
11717
11724
(
2006
).
25.
A. J.
Barlow
and
A.
Erginsav
, “
Viscoelastic retardation of supercooled liquids
,”
Proc. R. Soc. A
327
,
175
190
(
1972
).
26.
B.
Jakobsen
,
K.
Niss
,
C.
Maggi
,
N. B.
Olsen
,
T.
Christensen
, and
J. C.
Dyre
, “
Beta relaxation in the shear mechanics of viscous liquids: Phenomenology and network modeling of the alpha-beta merging region
,”
J. Non-Cryst. Solids
357
,
267
273
(
2011
).
27.
T.
Christensen
and
N. B.
Olsen
, “
A rheometer for the measurement of a high shear modulus covering more than seven decades of frequency below 50 kHz
,”
Rev. Sci. Instrum.
66
,
5019
5031
(
1995
).
28.
T.
Hecksher
,
N. B.
Olsen
,
K. A.
Nelson
,
J. C.
Dyre
, and
T.
Christensen
, “
Mechanical spectra of glass-forming liquids. I. low-frequency bulk and shear moduli of DC704 and 5-PPE measured by piezoceramic transducers
,”
J. Chem. Phys.
138
,
12A543
(
2013
).
29.
B.
Igarashi
,
T.
Christensen
,
E. H.
Larsen
,
N.
B. Olsen
,
I. H.
Pedersen
,
T.
Rasmussen
, and
J. C.
Dyre
, “
A cryostat and temperature control system optimized for measuring relaxations of glass-forming liquids
,”
Rev. Sci. Instrum.
79
,
045105
(
2008
).
30.
B.
Igarashi
,
T.
Christensen
,
E. H.
Larsen
,
N.
B. Olsen
,
I. H.
Pedersen
,
T.
Rasmussen
, and
J. C.
Dyre
, “
An impedance-measurement setup optimized for measuring relaxations of glass-forming liquids
,”
Rev. Sci. Instrum.
79
,
045106
(
2008
).
31.
Details about the data can be obtained from the Glass and Time Data repository, found onlineat http://glass.ruc.dk/data.
32.
N.
Saglanmak
,
A. I.
Nielsen
,
N. B.
Olsen
,
J. C.
Dyre
, and
K.
Niss
, “
An electrical circuit model of the alpha-beta merging seen in dielectric relaxation of ultraviscous liquids
,”
J. Chem. Phys.
132
,
024503
(
2010
).
33.
B.
Jakobsen
,
T.
Hecksher
,
T.
Christensen
,
N. B.
Olsen
,
J. C.
Dyre
, and
K.
Niss
, “
Identical temperature dependence of the time scales of several linear-response functions of two glass-forming liquids
,”
J. Chem. Phys.
136
,
081102
(
2012
).
34.
P. V.
Christiansen
,
Dynamik og Diagrammer
(
IMFUFA Tekst No. 8, Roskilde University
,
Roskilde
,
1978
).
35.
D. C.
Karnopp
,
D. L.
Margolis
, and
R. C.
Rosenberg
,
System Dynamics—Modeling and Simulation of Mechatronic Systems
, 4th ed. (
Wiley
,
New York
,
2006
).
36.
H.
Paynter
,
Analysis and Design of Engineering Systems
(
MIT Press
,
Cambridge, Massachusetts
,
1961
).
37.
G.
Oster
,
A.
Perelson
, and
A.
Katchalsky
, “
Network thermodynamics
,”
Nature
234
,
393
399
(
1971
).
38.
T. B.
Schrøder
,
N. P.
Bailey
,
U. R.
Pedersen
,
N.
Gnan
, and
J. C.
Dyre
, “
Pressure-energy Correlations in liquids. III. Statistical mechanics and thermodynamics of liquids with hidden scale invariance
,”
J. Chem. Phys.
131
,
234503
(
2009
).
39.
J. D.
Ferry
,
Viscoelastic Properties of Polymers
, 2nd ed. (
Wiley
,
New York
,
1970
).
40.
R.
Richert
, “
Supercooled liquids and glasses by dielectric relaxation spectroscopy
,”
Adv. Chem. Phys.
156
,
101
195
(
2015
).
41.
E. A.
DiMarzio
and
M.
Bishop
, “
Connection between the macroscopic electric and mechanical susceptibilities
,”
J. Chem. Phys.
60
,
3802
3811
(
1974
).
42.
K.
Niss
,
B.
Jakobsen
, and
N. B.
Olsen
, “
Dielectric and shear mechanical relaxations in glass-forming liquids: A test of the Gemant-DiMarzio-Bishop model
,”
J. Chem. Phys.
123
,
234510
(
2005
).
43.
U.
Buchenau
, “
Shear and dielectric spectra in highly viscous liquids
,”
Phys. Rev. B
83
,
052201
(
2011
).
44.
A.
Garcia-Bernabe
,
J. V.
Lidon-Roger
,
M. J.
Sanchis
,
R.
Diaz-Calleja
, and
L. F.
del Castillo
, “
Interconversion algorithm between mechanical and dielectric relaxation measurements for acetate of cis- and trans-2-phenyl-5-hydroxymethyl-1,3-dioxane
,”
Phys. Rev. E
92
,
042307
(
2015
).
45.
J.
Meixner
and
H. G.
Reik
, “
Thermodynamik der irreversiblen Prozesse
,” in
Prinzipien der Thermodynamik und Statistik/Principles of Thermodynamics and Statistics
, Handbuch der Physik/Encyclopedia of Physics, Vol. 2/3/2, edited by
S.
Flügge
(
Springer
,
Berlin, Heidelberg
,
1959
), pp.
413
523
.
46.
J. D.
Bernal
, “
The Bakerian lecture, 1962. The structure of liquids
,”
Proc. R. Soc. London, Ser. A
280
,
299
322
(
1964
).
47.
A. K.
Jonscher
,
Universal Relaxation Law
(
Chelsea Dielectric Press
,
London
,
1996
).
48.
K. S.
Cole
and
R. H.
Cole
, “
Dispersion and absorption in dielectrics I. Alternating current characteristics
,”
J. Chem. Phys.
9
,
341
351
(
1941
).
49.
O. S.
Narayanaswamy
, “
A model of structural relaxation in glass
,”
J. Am. Ceram. Soc.
54
,
491
498
(
1971
).
50.
G. W.
Scherer
,
Relaxation in Glass and Composites
(
Wiley
,
New York
,
1986
).
51.
T.
Hecksher
,
N.
B. Olsen
, and
J. C.
Dyre
, “
Communication: Direct tests of single-parameter aging
,”
J. Chem. Phys.
142
,
241103
(
2015
).
52.
J. C.
Dyre
, “
Narayanaswamy’s 1971 aging theory and material time
,”
J. Chem. Phys.
143
,
114507
(
2015
).
53.
J.
Lamb
, “
Viscoelasticity and lubrication: A review of liquid properties
,”
J. Rheol.
22
,
317
347
(
1978
).
54.
N. B.
Olsen
,
T.
Christensen
, and
J. C.
Dyre
, “
Time-temperature superposition in viscous liquids
,”
Phys. Rev. Lett.
86
,
1271
1274
(
2001
).
55.
A. I.
Nielsen
,
T.
Christensen
,
B.
Jakobsen
,
K.
Niss
,
N.
B. Olsen
,
R.
Richert
, and
J. C.
Dyre
, “
Prevalence of approximate t relaxation for the dielectric process in viscous organic liquids
,”
J. Chem. Phys.
130
,
154508
(
2009
).
56.
J. C.
Dyre
, “
Solidity of viscous liquids. III. α relaxation
,”
Phys. Rev. E
72
,
011501
(
2005
).
57.
J. C.
Dyre
, “
Solidity of viscous liquids. IV. Density fluctuations
,”
Phys. Rev. E
74
,
021502
(
2006
).
58.
J. C.
Dyre
, “
Solidity of viscous liquids. V. Long-wavelength dominance of the dynamics
,”
Phys. Rev. E
76
,
041508
(
2007
).
59.
T.
Ooshida
,
S.
Goto
,
T.
Matsumoto
, and
M.
Otsuki
, “
Insights from single-file diffusion into cooperativity in higher dimensions
,”
Biophys. Rev. Lett.
11
,
9
38
(
2016
).
60.
A. J.
Barlow
,
A.
Erginsav
, and
J.
Lamb
, “
Viscoelastic relaxation of supercooled liquids
,”
Proc. R. Soc. London
298
,
481
(
1967
).
61.
A. J.
Barlow
, “
Viscoelastic relaxation of supercooled liquids
,”
Adv. Mol. Relax. Proc.
3
,
253
266
(
1972
).
62.
N. B.
Olsen
, “
Scaling of β-relaxation in the equilibrium liquid state of sorbitol
,”
J. Non-Cryst. Solids
235
,
399
405
(
1998
).
63.
N. B.
Olsen
,
T.
Christensen
, and
J. C.
Dyre
, “
β relaxation of nonpolymeric liquids close to the glass transition
,”
Phys. Rev. E
62
,
4435
4438
(
2000
).
64.
J. C.
Dyre
and
N. B.
Olsen
, “
Minimal model for beta relaxation in viscous liquids
,”
Phys. Rev. Lett.
91
,
155703
(
2003
).
65.
G. P.
Johari
, “
Effect of annealing on the secondary relaxations in glasses
,”
J. Chem. Phys.
77
,
4619
4626
(
1982
).
66.
J.
Qiao
,
R.
Casalini
, and
J.-M.
Pelletier
, “
Effect of physical aging on Johari-Goldstein relaxation in La-based bulk metallic glass
,”
J. Chem. Phys.
141
,
104510
(
2014
).
67.
T.
Christensen
and
N. B.
Olsen
, “
Determination of the frequency-dependent bulk modulus of glycerol using a piezoelectric spherical shell
,”
Phys. Rev. B
49
,
15396
15399
(
1994
).
68.
D.
Gundermann
,
K.
Niss
,
T.
Christensen
,
J. C.
Dyre
, and
T.
Hecksher
, “
The dynamic bulk modulus of three glass-forming liquids
,”
J. Chem. Phys.
140
,
244508
(
2014
).
69.
U.
Buchenau
, “
Bulk and shear relaxation in glasses and highly viscous liquids
,”
J. Chem. Phys.
136
,
224512
(
2012
).
70.
N. L.
Ellegaard
,
T.
Christensen
,
P. V.
Christiansen
,
N. B.
Olsen
,
U. R.
Pedersen
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
Single-order-parameter description of glass-forming liquids: A one-frequency test
,”
J. Chem. Phys.
126
,
074502
(
2007
).
71.
N. P.
Bailey
,
T.
Christensen
,
B.
Jakobsen
,
K.
Niss
,
N. B.
Olsen
,
U. R.
Pedersen
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
Glass-forming liquids: One or more ‘order’ parameters?
J. Phys. Condens. Matter
20
,
244113
(
2008
).
72.
D.
Gundermann
,
U. R.
Pedersen
,
T.
Hecksher
,
N. P.
Bailey
,
B.
Jakobsen
,
T.
Christensen
,
N. B.
Olsen
,
T. B.
Schrøder
,
D.
Fragiadakis
,
R.
Casalini
,
C. M.
Roland
,
J. C.
Dyre
, and
K.
Niss
, “
Predicting the density-scaling exponent of a glass–forming liquid from Prigogine-Defay ratio measurements
,”
Nat. Phys.
7
,
816
821
(
2011
).
73.
U. R.
Pedersen
,
N.
Gnan
,
N. P.
Bailey
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
Strongly correlating liquids and their isomorphs
,”
J. Non-Cryst. Solids
357
,
320
328
(
2011
).
74.
T. S.
Ingebrigtsen
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
What is a simple liquid?
Phys. Rev. X
2
,
011011
(
2012
).
75.
J. C.
Dyre
, “
Hidden scale invariance in condensed matter
,”
J. Phys. Chem. B
118
,
10007
10024
(
2014
).
76.
J. C.
Dyre
, “
Simple liquids’ quasiuniversality and the hard-sphere paradigm
,”
J. Phys.: Condens. Matter
28
,
323001
(
2016
).
77.
K.
Niss
,
D.
Gundermann
,
T.
Christensen
, and
J. C.
Dyre
, “
Dynamic thermal expansivity of liquids near the glass transition
,”
Phys. Rev. E
85
,
041501
(
2012
).
78.
U.
Buchenau
, “
Retardation and flow at the glass transition
,”
Phys. Rev. E
93
,
032608
(
2016
).
79.
G.
Diezemann
,
U.
Mohanty
, and
I.
Oppenheim
, “
Slow secondary relaxation in a free-energy landscape model for relaxation in glass-forming liquids
,”
Phys. Rev. E
59
,
2067
2083
(
1999
).
80.
R.
Böhmer
,
C.
Gainaru
, and
R.
Richert
, “
Structure and dynamics of monohydroxy alcohols—Milestones towards their microscopic understanding, 100 years after Debye
,”
Phys. Rep.
545
,
125
195
(
2014
).
81.
C.
Gainaru
,
R.
Figuli
,
T.
Hecksher
,
B.
Jakobsen
,
J. C.
Dyre
,
M.
Wilhelm
, and
R.
Böhmer
, “
Shear-modulus investigations of monohydroxy alcohols: Evidence for a short-chain-polymer rheological response
,”
Phys. Rev. Lett.
112
,
098301
(
2014
).
82.
J. C.
Dyre
,
N. B.
Olsen
, and
T.
Christensen
, “
Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids
,”
Phys. Rev. B
53
,
2171
2174
(
1996
).
83.
T.
Hecksher
and
J. C.
Dyre
, “
A review of experiments testing the shoving model
,”
J. Non-Cryst. Solids
407
,
14
22
(
2015
).
84.
U. R.
Pedersen
,
N. P.
Bailey
,
T. B.
Schrøder
, and
J. C.
Dyre
, “
Strong pressure-energy correlations in van der Waals liquids
,”
Phys. Rev. Lett.
100
,
015701
(
2008
).
You do not currently have access to this content.