Nowadays, much attention is put toward the description of noncovalent complexes exposed to the high pressure or embedded in confining environments. Such conditions may strongly modify the physical and chemical properties of molecular systems. This study focuses on the theoretical description of the confinement induced changes in geometry and energetic parameters of the halogen bonded FCl⋯CNF complex. A model analytical potential is applied to render the effect of orbital compression. In order to analyze the nature of halogen bond interaction, in the presence of spatial confinement, the supermolecular approach together with the symmetry-adapted perturbation theory is used. Furthermore, a thorough analysis of topological parameters, characterizing the halogen bond upon orbital compression, is performed within the quantum theory of atoms in molecules. The calculations are carried out using the ωB97x and CCSD(T) methods in connection with the aug-cc-pVTZ basis set. Among others, the obtained results indicate that the spatial confinement not only modifies the nature of halogen bond interaction but also induces the appearance of a completely new form of the studied FCl⋯CNF system.

1.
Advances in Quantum Chemistry: Theory of Confined Quantum Systems
, edited by
J. R.
Sabin
,
E.
Brändas
, and
S. A.
Cruz
(
Academic Press
,
Waltham, MA
,
2009
), Vol. 57 and 58.
2.
Z. V.
Todres
,
Free Preview Organic Chemistry in Confining Media
(
Springer
,
New York
,
2013
).
3.
W.
Jaskólski
, “
Confined many electron systems
,”
Phys. Rep.
271
,
1
66
(
1996
).
4.
R.
Zaleśny
,
R. W.
Góra
,
J.
Kozłowska
,
J. M.
Luis
,
H.
Ågren
, and
W.
Bartkowiak
, “
Resonant and nonresonant hyperpolarizabilities of spatially confined molecules: A case study of cyanoacetylene
,”
J. Chem. Theory Comput.
9
,
3463
3472
(
2013
).
5.
J.
Kozłowska
,
R.
Zaleśny
, and
W.
Bartkowiak
, “
On the nonlinear electrical properties of molecules in confined spaces—From cylindrical harmonic potential to carbon nanotube cages
,”
Chem. Phys.
428
,
19
28
(
2014
).
6.
J.
Kozłowska
,
A.
Roztoczyńska
, and
W.
Bartkowiak
, “
About diverse behavior of the molecular electric properties upon spatial confinement
,”
Chem. Phys.
456
,
98
105
(
2015
).
7.
W.
Grochala
,
R.
Hoffmann
,
J.
Feng
, and
N. W.
Ashcroft
, “
The chemical imagination at work in very tight places
,”
Angew. Chem., Int. Ed.
46
,
3620
3642
(
2007
).
8.
N. M.
Smith
,
K. S.
Iyer
, and
B.
Corry
, “
The confined space inside carbon nanotubes can dictate the stereo- and regioselectivity of Diels-Alder reactions
,”
Phys. Chem. Chem. Phys.
16
,
6986
6989
(
2014
).
9.
F.
Holka
,
M.
Urban
,
P.
Neogrády
, and
J.
Paldus
, “
CCSD(T) calculations of confined systems: In-crystal polarizabilities of F, Cl, O2−, and S2−
,”
J. Chem. Phys.
141
,
214303
(
2014
).
10.
P.
Lipkowski
,
J.
Kozłowska
,
A.
Roztoczyńska
, and
W.
Bartkowiak
, “
Hydrogen-bonded complexes upon spatial confinement: Structural and energetic aspects
,”
Phys. Chem. Chem. Phys.
16
,
1430
(
2014
).
11.
A.
Roztoczyńska
,
J.
Kozłowska
,
P.
Lipkowski
, and
W.
Bartkowiak
, “
Does the spatial confinement influence the electric properties and cooperative effects of the hydrogen bonded systems? HCN chains as a case study
,”
Chem. Phys. Lett.
608
,
264
268
(
2014
).
12.
M.
Jabłoński
and
M.
Sola
, “
Influence of confinement on hydrogen bond energy. The case of the FH⋯NCH dimer
,”
J. Phys. Chem. A
114
,
10253
10260
(
2010
).
13.
Y. J.
Wang
and
L. Y.
Wang
, “
Water chain encapsulated in carbon nanotube revealed by density functional theory
,”
Int. J. Quantum Chem.
111
,
4465
4471
(
2011
).
14.
W.
Wang
,
D.
Wang
,
Y.
Zhang
,
B.
Ji
, and
A.
Tian
, “
Hydrogen bond and halogen bond inside the carbon nanotube
,”
J. Chem. Phys.
134
,
054317
(
2011
).
15.
A.
Roztoczyńska
,
J.
Kozłowska
,
P.
Lipkowski
, and
W.
Bartkowiak
, “
Hydrogen bonding inside and outside carbon nanotubes: HF dimer as a case study
,”
Phys. Chem. Chem. Phys.
18
,
2417
2427
(
2016
).
16.
D.
Ajami
,
P. M.
Tolstoy
,
H.
Dube
,
S.
Odermatt
,
B.
Koeppe
,
J.
Guo
,
H.-H.
Limbach
, and
J.
Rebek
, Jr.
, “
Encapsulated carboxylic acid dimers with compressed hydrogen bonds
,”
Angew. Chem., Int. Ed.
50
,
528
531
(
2011
).
17.
D.
Ajami
,
H.
Dube
, and
J.
Rebek
, Jr.
, “
Boronic acid hydrogen bonding in encapsulation complexes
,”
J. Am. Chem. Soc.
133
,
9689
9691
(
2011
).
18.
R. C.
Dougherty
, “
Temperature and pressure dependence of hydrogen bond strength: A perturbation molecular orbital approach
,”
J. Chem. Phys.
109
,
7372
7378
(
1998
).
19.
H.
Shimizu
, “
High-pressure raman study of the hydrogen bonded crystalline formic acid
,”
Physica B+C
139
,
479
481
(
1986
).
20.
J. S.
Loveday
,
S.
Klotz
,
R. J.
Nelmes
,
J. M.
Besson
, and
G.
Hamel
, “
Pressure-induced hydrogen bonding: Structure of D2S phase I′
,”
Phys. Rev. Lett.
85
,
1024
1027
(
2000
).
21.
S.
Sasaki
and
H.
Shimizu
,
J. Phys. Soc. Jpn.
64
,
3309
3314
(
1995
).
22.
H.
Shimizu
,
H.
Yamaguchi
,
S.
Sasaki
,
A.
Honda
,
S.
Endo
, and
M.
Kobayashi
,
Phys. Rev. B
51
,
9391
9394
(
1995
).
23.
S.
Kozuch
and
J. M. L.
Martin
, “
Halogen bonds: Benchmarks and theoretical analysis
,”
J. Chem. Theory Comput.
9
,
1918
1931
(
2013
).
24.
P.
Politzer
,
P.
Lane
,
M.
Concha
,
Y.
Ma
, and
J. S.
Murray
, “
An overview of halogen bonding
,”
J. Mol. Model.
13
,
305
311
(
2007
).
25.
A. C.
Legon
, “
The halogen bond: An interim perspective
,”
Phys. Chem. Chem. Phys.
12
,
7736
7747
(
2010
).
26.
P.
Politzer
and
J. S.
Murray
, “
Halogen bonding: An interim discussion
,”
ChemPhysChem
14
,
278
294
(
2013
).
27.
P.
Metrangolo
,
F.
Meyer
,
T.
Pilati
,
G.
Resnati
, and
G.
Terraneo
, “
Halogen bonding in supramolecular chemistry
,”
Angew. Chem., Int. Ed.
47
,
6114
6127
(
2008
).
28.
P.
Metrangolo
,
H.
Neukirch
,
T.
Pilati
, and
G.
Resnati
, “
Halogen bonding based recognition processes: A world parallel to hydrogen bonding
,”
Acc. Chem. Res.
38
,
386
395
(
2005
).
29.
P.
Politzer
,
J. S.
Murray
, and
T.
Clark
, “
Halogen bonding: An electrostatically-driven highly directional noncovalent interaction
,”
Phys. Chem. Chem. Phys.
12
,
7748
7757
(
2010
).
30.
V.
Oliveira
,
E.
Kraka
, and
D.
Creme
, “
The intrinsic strength of the halogen bond: Electrostatic and covalent contributions described by coupled cluster theory
,”
Phys. Chem. Chem. Phys.
18
,
33031
33046
(
2016
).
31.
G. R.
Desiraju
,
P. S.
Ho
,
L.
Kloo
,
A. C.
Legon
,
R.
Marquardt
,
P.
Metrangolo
,
P.
Politzer
,
G.
Resnati
, and
K.
Rissanen
, “
Definition of the halogen bond (IUPAC recommendations 2013)
,”
Pure Appl. Chem.
85
,
1711
1713
(
2013
).
32.
T.
Brinck
,
J. S.
Murray
, and
P.
Politzer
, “
Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions
,”
Int. J. Quantum Chem.
44
,
57
64
(
1992
).
33.
J. S.
Murray
,
K.
Paulsen
, and
P.
Politzer
, “
Molecular surface electrostatic potentials in the analysis of non-hydrogen-bonding noncovalent interactions
,”
Proc. - Indian Acad. Sci., Chem. Sci.
106
,
267
275
(
1994
).
34.
A.
Bauz
,
T. J.
Mooibroek
, and
A.
Frontera
, “
The Bright Future of Unconventional s-Hole Interactions
,”
ChemPhysChem
16
,
2496
2517
(
2015
).
35.
T.
Clark
,
M.
Hennemann
,
J. S.
Murray
, and
P.
Politzer
, “
Halogen bonding: The σ-hole
,”
J. Mol. Model.
13
,
291
296
(
2007
).
36.
K.
Eskandari
and
H.
Zariny
, “
Halogen bonding: A lump-hole interaction
,”
Chem. Phys. Lett.
492
,
9
13
(
2010
).
37.
F.
Guthries
, “
On the iodide of iodammonium
,”
J. Am. Chem. Soc.
16
,
239
244
(
1863
).
38.
A.
Farina
,
S. V.
Meille
,
M. T.
Messina
,
P.
Metrangolo
,
G.
Resnati
, and
G.
Vecchio
, “
Resolution of racemic 1,2-dibromohexafluoropropane through halogen-bonded supramolecular helices
,”
Angew. Chem., Int. Ed.
38
,
2433
2436
(
1999
).
39.
M. T.
Messina
,
P.
Metrangolo
,
W.
Panzeri
,
E.
Ragg
, and
G.
Resnati
, “
Perfluorocarbon-hydrocarbon self-assembly. Part 3. Liquid phase interactions between perfluoroalkylhalides and heteroatom containing hydrocarbons
,”
Tetrahedron Lett.
39
,
9069
9072
(
1998
).
40.
A. C.
Legon
, “
Prereactive complexes of dihalogens XY with Lewis bases B in the gas phase: A systematic case for the halogen analogue B⋯XY of the hydrogen bond B⋯HX
,”
Angew. Chem., Int. Ed.
38
,
2686
2714
(
1999
).
41.
F.
Meyer
and
P.
Dubois
, “
Halogen bonding at work: Recent applications in synthetic chemistry and materials science
,”
CrystEngComm
15
,
3058
3071
(
2013
).
42.
L. A.
Hardegger
,
B.
Kuhn
,
B.
Spinnler
,
L.
Anselm
,
R.
Ecabert
,
M.
Stihle
,
B.
Gsell
,
R.
Thoma
,
J.
Diez
,
J.
Benz
,
J.-M.
Plancher
,
G.
Hartmann
,
D. W.
Banner
,
W.
Haap
, and
F.
Diederich
, “
Systematic investigation of halogen bonding in protein-ligand interactions
,”
Angew. Chem., Int. Ed.
50
,
314
318
(
2011
).
43.
P.
Auffinger
,
F. A.
Hays
,
E.
Westhof
, and
P. S.
Ho
, “
Halogen bonds in biological molecules
,”
Proc. Natl. Acad. Sci. U. S. A.
101
,
16789
16794
(
2004
).
44.
Y.
Lu
,
T.
Shi
,
Y.
Wang
,
H.
Yang
,
X.
Yan
,
X.
Luo
,
H.
Jiang
, and
W.
Zhu
, “
Halogen bonding—A novel interaction for rational drug design?
,”
J. Med. Chem.
52
,
2854
2862
(
2009
).
45.
M. G.
Sarwar
,
D.
Ajami
,
G.
Theodorakopoulos
,
I. D.
Petsalakis
, and
J.
Rebek
, Jr.
, “
Amplified halogen bonding in a small space
,”
J. Am. Chem. Soc.
135
,
13672
13675
(
2013
).
46.
H. S.
El-Sheshtawy
,
B. S.
Bassil
,
K. I.
Assaf
,
U.
Kortz
, and
W. M.
Nau
, “
Halogen bonding inside a molecular container
,”
J. Am. Chem. Soc.
134
,
19935
19941
(
2012
).
47.
H.
Takezawa
,
T.
Murase
,
G.
Resnati
,
P.
Metrangolo
, and
M.
Fujita
, “
Halogen-bond-assisted guest inclusion in a synthetic cavity
,”
Angew. Chem., Int. Ed.
127
,
8531
8534
(
2015
).
48.
D.
Bielińska-Wąż
,
G. H.
Diercksen
, and
M.
Klobukowski
, “
Quantum chemistry of confined systems: Structure and vibronic spectra of a confined hydrogen molecule
,”
Chem. Phys. Lett.
349
,
215
219
(
2001
).
49.
J. M.
Luis
,
M.
Duran
,
J. L.
Andrés
,
B.
Champagne
, and
B.
Kirtman
, “
Finite field treatment of vibrational polarizabilities and hyperpolarizabilities: On the role of the Eckart conditions, their implementation, and their use in characterizing key vibrations
,”
J. Chem. Phys.
111
,
875
884
(
1999
).
50.
F. B. S. F.
Boys
, “
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
,”
Mol. Phys.
19
,
553
556
(
1970
).
51.
B.
Jeziorski
,
R.
Moszyński
, and
K.
Szalewicz
, “
Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes
,”
Chem. Rev.
94
,
1887
1930
(
1994
).
52.
G.
Chalasinski
and
M. M.
Szczesniak
, “
On the connection between the supermolecular Møller-Plesset treatment of the interaction energy and the perturbation theory of intermolecular forces
,”
Mol. Phys.
63
,
205
224
(
1988
).
53.
G.
Chalasinski
and
M. M.
Szczesniak
, “
Origins of structure and energetics of van der Waals clusters from ab initio calculations
,”
Chem. Rev.
94
,
1723
1765
(
1994
).
54.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al, molpro, version 2012.1, a package of ab initio programs,
2012
, see http://www.molpro.net.
55.
R. F. W.
Bader
, “
Atoms in molecules
,”
A Quantum Theory
(
Oxford University Press
,
Oxford
,
1990
).
56.
U.
Koch
and
P. L. A.
Popelier
, “
Characterization of C–H–O hydrogen bonds on the basis of the charge density
,”
J. Phys. Chem.
99
,
9747
9754
(
1995
).
57.
E.
Espinosa
,
I.
Alkorta
,
J.
Elguero
, and
E.
Molins
, “
From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving x-h⋯f-y systems
,”
J. Chem. Phys.
117
,
5529
5542
(
2002
).
58.
I.
Rozas
,
I.
Alkorta
, and
J.
Elguero
, “
Unusual hydrogen bonds: Hπ interactions
,”
J. Phys. Chem. A
101
,
9457
9463
(
1997
).
59.
D.
Cremer
and
E.
Kraka
, “
A description of the chemical bond in terms of local properties of electron density and energy
,”
Croat. Chem. Acta
57
,
1259
1281
(
1984
).
60.
S.
Jenkins
and
I.
Morrison
, “
The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities
,”
Chem. Phys. Lett.
317
,
97
102
(
2000
).
61.
W. D.
Arnold
and
E.
Oldfield
, “
The chemical nature of hydrogen bonding in proteins via NMR: J–couplings, chemical shifts and AIM theory
,”
J. Am. Chem. Soc.
122
,
12835
12841
(
2000
).
62.
T. A.
Keith
, AIMAll (Version 16.10.31), TK Gristmill Software, Overland Park KS, USA, 2016, aim.tkgristmill.com.
63.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision D.01,
Gaussian, Inc.
,
Wallingford, CT
,
2009
.
64.
J. E.
Del Bene
,
I.
Alkorta
, and
J.
Elguero
, “
Do traditional, chlorine-shared, ion-pair halogen, bonds exist? An ab initio investigation of FCl:CNX complexes
,”
J. Phys. Chem. A
114
,
12958
12962
(
2010
).
65.
N.
Nagels
,
D.
Hauchecorne
, and
W. A.
Herrebout
, “
Exploring the C-X…π Halogen Bonding Motif: An Infrared and Raman Study of the Complexes of CF3X (X = Cl, Br and I) with the Aromatic Model Compounds Benzene and Toluene
,”
Molecules
18
,
6829
6851
(
2013
).
66.
M.
Jabłoński
and
M.
Palusiak
, “
Basis set and method dependence in quantum theory of atoms in molecules calculations for covalent bonds
,”
J. Phys. Chem. A
114
,
12498
12505
(
2010
).
67.
M.
Jabłoński
and
M.
Palusiak
, “
Basis set and method dependence in atoms in molecules calculations
,”
J. Phys. Chem. A
114
,
2240
2244
(
2010
).
68.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
, “
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis
,”
Can. J. Phys.
58
,
1200
1211
(
1980
).
69.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the colle-salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
789
(
1988
).
70.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
5652
(
1993
).
71.
P. J.
Stephens
,
F. J.
Devlin
,
C. F.
Chabalowski
, and
M. J.
Frisch
, “
Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
,”
J. Phys. Chem.
98
,
11623
11627
(
1994
).
72.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic-behavior
,”
Phys. Rev. A
38
,
3098
3100
(
1998
).
73.
A. D.
Boese
and
J. M. L.
Martin
, “
Development of density functionals for thermochemical kinetics
,”
J. Chem. Phys.
121
,
3405
3416
(
2004
).
74.
T.
Yanai
,
D.
Tew
, and
N.
Handy
, “
A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
57
(
2004
).
75.
O. A.
Vydrov
and
G. E.
Scuseria
, “
Assessment of a long range corrected hybrid functional
,”
J. Chem. Phys.
125
,
234109
(
2006
).
76.
O. A.
Vydrov
,
J.
Heyd
,
A.
Krukau
, and
G. E.
Scuseria
, “
Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals
,”
J. Chem. Phys.
125
,
074106
(
2006
).
77.
O. A.
Vydrov
,
G. E.
Scuseria
, and
J. P.
Perdew
, “
Tests of functionals for systems with fractional electron number
,”
J. Chem. Phys.
126
,
154109
(
2007
).
78.
H.
Iikura
,
T.
Tsuneda
,
T.
Yanai
, and
K.
Hirao
, “
Long-range correction scheme for generalized-gradient-approximation exchange functionals
,”
J. Chem. Phys.
115
,
3540
3544
(
2001
).
79.
Y.
Zhao
and
D. G.
Truhlar
, “
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
,
215
241
(
2008
).
80.
Y.
Zhao
and
D. G.
Truhlar
, “
A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
,”
J. Chem. Phys.
125
,
194101
(
2006
).
81.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6169
(
1999
).
82.
V.
Vetere
,
C.
Adamo
, and
P.
Maldivi
, “
Performance of the ‘parameter free’ PBE0 functional for the modeling of molecular properties of heavy metals
,”
Chem. Phys. Lett.
325
,
99
105
(
2000
).
83.
J.-D.
Chai
and
M.
Head-Gordon
, “
Systematic optimization of long-range corrected hybrid density functionals
,”
J. Chem. Phys.
128
,
084106
(
2008
).
84.
J.-D.
Chai
and
M.
Head-Gordon
, “
Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections
,”
Phys. Chem. Chem. Phys.
10
,
6615
6620
(
2008
).
85.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
) .

Supplementary Material

You do not currently have access to this content.