Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer units. In the simulations, the maximum concentration and degree of ordering are attained for non-selective nanorods near the domain boundary. In this case, the nanorods have a certain tendency to align parallel to the interface in the boundary region and perpendicular to it inside the domains. Similar orientation ordering of nanoparticles located at the lamellar interface is predicted by the molecular theory which takes into account that the nanoparticles interact with monomer units via both isotropic and anisotropic potentials. Computer simulations enable one to study the effects of the nanorod concentration, length, stiffness, and selectivity of their interactions with the copolymer components on the phase stability and orientational order of nanoparticles. If the volume fraction of the nanorods is lower than 0.1, they have no effect on the copolymer transition from the disordered state into a lamellar microstructure. Increasing nanorod concentration or nanorod length results in clustering of the nanorods and eventually leads to a macrophase separation, whereas the copolymer preserves its lamellar morphology. Segregated nanorods of length close to the width of the diblock copolymer domains are stacked side by side into smectic layers that fill the domain space. Thus, spontaneous organization and orientation of nanorods leads to a spatial modulation of anisotropic composite properties which may be important for various applications.

1.
C. M.
Bates
and
F. S.
Bates
,
Macromolecules
50
,
3
(
2017
).
2.
M.
Luo
and
T. H.
Epps
 III
,
Macromolecules
46
,
7567
(
2013
).
3.
H.
Hu
,
M.
Gopinadhan
, and
C. O.
Osuji
,
Soft Matter
10
,
3867
(
2014
).
4.
C. M.
Bates
,
M. J.
Maher
,
D. W.
Janes
,
C. J.
Ellison
, and
C. G.
Willson
,
Macromolecules
47
,
2
(
2014
).
5.
P. D.
Topham
,
A. J.
Parnell
, and
R. C.
Hiorns
,
J. Polym. Sci., Part B: Polym. Phys.
49
,
1131
(
2011
).
6.
V.
Abetz
,
Macromol. Rapid Commun.
36
,
10
(
2015
).
7.
F. S.
Bates
,
M. A.
Hillmyer
,
T. P.
Lodge
,
C. M.
Bates
,
K. T.
Delaney
, and
G. H.
Fredrickson
,
Science
336
,
434
(
2012
).
8.
M. R.
Bockstaller
,
R. A.
Mickiewicz
, and
E. L.
Thomas
,
Adv. Mater.
17
,
1331
(
2005
).
9.
T. N.
Hoheisel
,
K.
Hur
, and
U. B.
Wiesner
,
Prog. Polym. Sci.
40
,
3
(
2015
).
10.
S.
Biswajit
and
P.
Alexandridis
,
Prog. Polym. Sci.
40
,
33
(
2015
).
11.
M. A.
Boles
,
M.
Engel
, and
D. V.
Talapin
,
Chem. Rev.
116
,
11220
(
2016
).
12.
A. C.
Balazs
,
T.
Emrick
, and
T. P.
Russell
,
Science
314
,
1107
(
2006
).
13.
V. A.
Gerasin
,
E. M.
Antipov
,
V. V.
Karbushev
,
V. G.
Kulichikhin
,
G. P.
Karpacheva
,
R. V.
Talroze
, and
Y. V.
Kudryavtsev
,
Russ. Chem. Rev.
82
,
303
(
2013
).
14.
C.
Liedel
,
K. A.
Schindler
,
M. J.
Pavan
,
C.
Levin
,
C. W.
Pester
,
M.
Ruppel
,
V. S.
Urban
,
R.
Shenhar
, and
A.
Böker
,
Small
19
,
3276
(
2013
).
15.
S.
Samant
,
S. T.
Hailu
,
A. M.
Al-Enizi
,
A.
Karim
, and
D.
Raghavan
,
J. Polym. Sci., Part B: Polym. Phys.
53
,
604
(
2015
).
16.
R. M.
Mutiso
and
K. I.
Winey
,
Prog. Polym. Sci.
40
,
63
(
2015
).
17.
J.
Albuerne
,
A.
Boschetti-de-Fierro
,
C.
Abetz
,
D.
Fierro
, and
V.
Abetz
,
Adv. Eng. Mater.
13
,
803
(
2011
).
18.
A.-C.
Baudouin
,
J.
Devaux
, and
C.
Bailly
,
Polymer
51
,
1341
(
2010
).
19.
A.-C.
Baudouin
,
D.
Auhl
,
F.
Tao
,
J.
Devaux
, and
C.
Bailly
,
Polymer
52
,
149
(
2011
).
20.
A.
Göldel
and
P.
Pötschke
, in
Polymer Carbon Nanotube Composites: Preparation, Properties and Applications
, edited by
T.
McNally
and
P.
Pötschke
(
Woodhead
,
New Delhi
,
2011
), Chap. 19, pp.
587
620
.
21.
B.
Du
,
U. A.
Handge
,
M.
Wambach
,
C.
Abetz
,
S.
Rangou
, and
V.
Abetz
,
Polymer
54
,
6165
(
2013
).
22.
Handbook of Nanophysics: Nanoparticles and Quantum Dots
, edited by
K. D.
Sattler
(
CRC Press
,
Boca Raton
,
2011
).
23.
Complex-Shaped Metal Nanoparticles: Bottom-Up Syntheses and Applications
, edited by
T. K.
Sau
and
A. L.
Rogach
(
Wiley-VCH
,
Weinheim
,
2012
).
24.
R. D.
Deshmukh
,
Y.
Liu
, and
R. J.
Composto
,
Nano Lett.
7
,
3662
(
2007
).
25.
W.
Li
,
P.
Zhang
,
M.
Dai
,
J.
Hie
,
T.
Babu
,
Y.-L.
Xu
,
R.
Deng
,
R.
Liang
,
M.-H.
Lu
,
Z.
Nie
, and
J.
Zhu
,
Macromolecules
46
,
2241
(
2013
).
26.
B.
Rasin
,
H.
Chao
,
G.
Jiang
,
D.
Wang
,
R. A.
Riggleman
, and
R. J.
Composto
,
Soft Matter
12
,
2177
(
2016
).
27.
J. G.
Son
,
W. K.
Bae
,
H.
Kang
,
P. F.
Nealey
, and
K.
Char
,
ACS Nano
3
,
3927
(
2009
).
28.
Q. L.
Zhang
,
S.
Gupta
,
T.
Emrick
, and
T. P.
Russell
,
J. Am. Chem. Soc.
128
,
3898
(
2006
).
29.
E.
Ploshnik
,
A.
Salant
,
U.
Banin
, and
R.
Shenhar
,
Adv. Mater.
22
,
2774
(
2010
).
30.
E.
Ploshnik
,
A.
Salant
,
U.
Banin
, and
R.
Shenhar
,
Phys. Chem. Chem. Phys.
12
,
11885
(
2010
).
31.
A.
Halevi
,
S.
Halvini
,
M.
Oded
,
A. H. E.
Müller
,
U.
Banin
, and
R.
Shenhar
,
Macromolecules
47
,
3022
(
2014
).
32.
K.
Thorkelsson
,
A. J.
Mastroianni
,
P.
Ercius
, and
T.
Hu
,
Nano Lett.
12
,
498
(
2012
).
33.
K.
Thorkelsson
,
J. H.
Nelson
,
A. P.
Alivisatos
, and
T.
Hu
,
Nano Lett.
13
,
4908
(
2013
).
34.
K.
Thorkelsson
,
N.
Bronstein
, and
T.
Hu
,
Macromolecules
49
,
6669
(
2016
).
35.
K. H.
Ku
,
H.
Yang
,
J. N.
Shin
, and
B. J.
Kim
,
J. Polym. Sci., Part A: Polym. Chem.
53
,
188
(
2015
).
36.
C.-T.
Lo
,
M.-H.
Li
, and
W.-T.
Lin
,
J. Chem. Phys.
142
,
184903
(
2015
).
37.
G. H.
Fredrickson
,
V.
Ganesan
, and
F.
Drolet
,
Macromolecules
35
,
16
(
2002
).
38.
M. W.
Matsen
,
J. Phys.: Condens. Matter
14
,
R21
(
2002
).
39.
Z.
Shou
,
G. A.
Buxton
, and
A. C.
Balazs
,
Compos. Interfaces
10
,
343
(
2003
).
40.
K.
Hur
,
R. G.
Hennig
,
F. A.
Escobedo
, and
U.
Wiesner
,
J. Chem. Phys.
133
,
194108
(
2010
).
41.
S.
Sides
,
B.
Kim
,
E.
Kramer
, and
G.
Fredrickson
,
Phys. Rev. Lett.
96
,
250601
(
2006
).
42.
J. U.
Kim
and
M. W.
Matsen
,
Phys. Rev. Lett.
102
,
078303
(
2009
).
43.
H.
Chao
,
B. A.
Hagberg
, and
R. A.
Riggleman
,
Soft Matter
10
,
8083
(
2014
).
44.
J.
Koski
,
H.
Chao
, and
R. A.
Riggleman
,
J. Chem. Phys.
139
,
244911
(
2013
).
45.
Q.-Y.
Tang
and
Y.-Q.
Ma
,
J. Phys. Chem. B
113
,
10117
(
2009
).
46.
M. A.
Osipov
and
M. V.
Gorkunov
,
Eur. Phys. J. E
39
,
126
(
2016
).
47.
L.-T.
Yan
and
X.-M.
Xie
,
Prog. Polym. Sci.
38
,
369
(
2013
).
48.
L.
He
,
L.
Zhang
,
A.
Xia
, and
H.
Liang
,
J. Chem. Phys.
130
,
144907
(
2009
).
49.
L.
He
,
L.
Zhang
,
H.
Chen
, and
H.
Liang
,
Polymer
50
,
3403
(
2009
).
50.
L.
He
,
L.
Zhang
, and
H.
Liang
,
Polymer
51
,
3303
(
2010
).
51.
A.
Chai
,
D.
Zhang
,
Y.
Jiang
,
L.
He
, and
L.
Zhang
,
J. Chem. Phys.
139
,
104901
(
2013
).
52.
Z.
Zhang
,
T.
Li
, and
E.
Nies
,
Macromolecules
47
,
5416
(
2014
).
53.
P. J.
Hoogerbrugge
and
J. M. V. A.
Koelman
,
Europhys. Lett.
19
,
155
(
1992
).
54.
J. M. V. A.
Koelman
and
P. J.
Hoogerbrugge
,
Europhys. Lett.
21
,
363
(
1993
).
55.
P.
Espanol
and
P. B.
Warren
,
Europhys. Lett.
30
,
191
(
1995
).
56.
R. D.
Groot
and
P. B.
Warren
,
J. Chem. Phys.
107
,
4423
(
1997
).
57.
T. F.
Miller
,
M.
Eleftheriou
,
P.
Pattnaik
,
A.
Ndirango
,
D.
Newns
, and
G. J.
Martyna
,
J. Chem. Phys.
116
,
8649
(
2002
).
58.
Y. K.
Levine
,
A. E.
Gomes
,
A. F.
Martins
, and
A.
Polimeno
,
J. Chem. Phys.
122
,
144902
(
2005
).
59.
Z.
Zhang
and
H.
Guo
,
J. Chem. Phys.
133
,
144911
(
2010
).
60.
See http://lammps.sandia.gov/ for the general information, source code, executables, and user manual for the LAMMPS molecular dynamics package.
61.
G.
Besold
,
I.
Vattulainen
,
M.
Karttunen
, and
J. M.
Polson
,
Phys. Rev. E
62
,
R7611
(
2000
).
62.
A.
AlSunaidi
,
W. K.
den Otter
, and
J. H. R.
Clarke
,
Philos. Trans. R. Soc., A
362
,
1773
(
2004
).
63.
A.
Polimeno
,
A.
Gomes
, and
A. F.
Martins
, in
Computer Simulation of Liquid Crystals and Polymers
, NATO Science Series II: Mathematics, Physics and Chemistry Vol. 177, edited by
P.
Pasini
,
C.
Zannoni
, and
S.
Žumer
(
Kluwer
,
Dordrecht
,
2005
).
64.
A. A.
Gavrilov
,
Y. V.
Kudryavtsev
,
P. G.
Khalatur
, and
A. V.
Chertovich
,
Chem. Phys. Lett.
503
,
277
(
2011
).
65.
L.
Leibler
,
Macromolecules
13
,
1602
(
1980
).
66.
G. H.
Fredrickson
and
E.
Helfand
,
J. Chem. Phys.
87
,
697
(
1987
).
67.
R. D.
Groot
and
T. J.
Madden
,
J. Chem. Phys.
108
,
8713
(
1998
).
68.
A. A.
Gavrilov
,
Y. V.
Kudryavtsev
, and
A. V.
Chertovich
,
J. Chem. Phys.
139
,
224901
(
2013
).
69.
O. N.
Vassiliev
and
M. W.
Matsen
,
J. Chem. Phys.
118
,
7700
(
2003
).
70.
J.
Glaser
,
P.
Medapuram
,
T. M.
Beardsley
,
M. W.
Matsen
, and
D. C.
Morse
,
Phys. Rev. Lett.
113
,
068302
(
2014
).
71.
P.
Medapuram
,
J.
Glaser
, and
D. C.
Morse
,
Macromolecules
48
,
819
(
2015
).
72.
T.
Beardsley
and
M. W.
Matsen
,
Phys. Rev. Lett.
117
,
217801
(
2016
).
73.
B. J.
Kim
,
J.
Bang
,
C. J.
Hawker
, and
E. J.
Kramer
,
Macromolecules
39
,
4108
(
2006
).
74.
T.
Nakano
,
D.
Kawaguchi
, and
Y.
Matsushita
,
J. Am. Chem. Soc.
135
,
6798
(
2013
).
75.
I. A.
Nyrkova
,
A. R.
Khokhlov
, and
M.
Doi
,
Macromolecules
26
,
3601
(
1993
).
You do not currently have access to this content.