We investigate the applicability of the linearized semiclassical initial value representation (LSC-IVR) method to excitation energy transfer (EET) problems in molecular aggregates by simulating the EET dynamics of a dimer model in a wide range of parameter regime and comparing the results to those obtained from a numerically exact method. It is found that the LSC-IVR approach yields accurate population relaxation rates and decoherence rates in a broad parameter regime. However, the classical approximation imposed by the LSC-IVR method does not satisfy the detailed balance condition, generally leading to incorrect equilibrium populations. Based on this observation, we propose a post-processing algorithm to solve the long time equilibrium problem and demonstrate that this long-time correction method successfully removed the deviations from exact results for the LSC-IVR method in all of the regimes studied in this work. Finally, we apply the LSC-IVR method to simulate EET dynamics in the photosynthetic Fenna-Matthews-Olson complex system, demonstrating that the LSC-IVR method with long-time correction provides excellent description of coherent EET dynamics in this typical photosynthetic pigment-protein complex.

1.
J. C.
Tully
,
Faraday Discuss.
110
,
407
(
1998
).
2.
J. E.
Subotnik
and
N.
Shenvi
,
J. Chem. Phys.
134
,
024105
(
2011
).
4.
S.
Bai
,
W.
Xie
, and
Q.
Shi
,
J. Phys. Chem. A
118
,
9262
(
2014
).
5.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
121
,
3368
(
2004
).
6.
S.
Habershon
,
D. E.
Manolopoulos
,
T. E.
Markland
, and
T. F.
Miller
 III
,
Annu. Rev. Phys. Chem.
64
,
387
(
2013
).
7.
J. E.
Subotnik
,
A.
Jain
,
B.
Landry
,
A.
Petit
,
W.
Ouyang
, and
N.
Bellonzi
,
Annu. Rev. Phys. Chem.
67
,
387
(
2016
).
8.
W.
Xie
,
S.
Bai
,
L.
Zhu
, and
Q.
Shi
,
J. Phys. Chem. A
117
,
6196
(
2013
).
9.
J. H. V.
Vleck
,
Proc. Natl. Acad. Sci. U. S. A.
14
,
178
(
1928
).
10.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
7064
(
1998
).
11.
W. H.
Miller
,
J. Phys. Chem. A
105
,
2942
(
2001
).
12.
W. H.
Miller
,
Proc. Natl. Acad. Sci. U. S. A.
102
,
6660
(
2005
).
13.
H.-D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
).
14.
G.
Stock
and
M.
Thoss
,
Phys. Rev. Lett.
78
,
578
(
1997
).
15.
M.
Thoss
and
G.
Stock
,
Phys. Rev. A
59
,
64
(
1999
).
16.
N.
Makri
and
K.
Thompson
,
Chem. Phys. Lett.
291
,
101
(
1998
).
17.
K.
Thompson
and
N.
Makri
,
J. Chem. Phys.
110
,
1343
(
1999
).
18.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
,
J. Chem. Phys.
108
,
9726
(
1998
).
19.
J.
Liu
,
Int. J. Quantum Chem.
115
,
657
(
2015
).
20.
N.
Ananth
,
C.
Venkataraman
, and
W. H.
Miller
,
J. Chem. Phys.
127
,
084114
(
2007
).
21.
H.
Wang
,
X.
Song
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
110
,
4828
(
1999
).
22.
G.
Stock
and
U.
Muller
,
J. Chem. Phys.
111
,
65
(
1999
).
23.
A. A.
Golosov
and
D. R.
Reichman
,
J. Chem. Phys.
114
,
1065
(
2001
).
24.
W. H.
Miller
,
J. Chem. Phys.
136
,
210901
(
2012
).
25.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
4190
(
1998
).
26.
Q.
Shi
and
E.
Geva
,
J. Phys. Chem. A
107
,
9059
(
2003
).
27.
J.
Liu
and
W. H.
Miller
,
J. Chem. Phys.
134
,
104101
(
2011
).
28.
J.
Liu
and
W. H.
Miller
,
J. Chem. Phys.
134
,
104102
(
2011
).
29.
G. S.
Engel
,
T. R.
Calhoun
,
E. L.
Read
,
T. K.
Ahn
,
T.
Mancal
,
Y.-C.
Cheng
,
R. E.
Blankenship
, and
G. R.
Fleming
,
Nature
446
,
782
(
2007
).
30.
H.
Lee
,
Y.-C.
Cheng
, and
G. R.
Fleming
,
Science
316
,
1462
(
2007
).
31.
Y.-C.
Cheng
and
G. R.
Fleming
,
Annu. Rev. Phys. Chem.
60
,
241
(
2009
).
32.
G.
Tao
and
W. H.
Miller
,
J. Phys. Chem. Lett.
1
,
891
(
2010
).
33.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
133
,
184108
(
2010
).
34.
P.
Huo
and
D. F.
Coker
,
J. Chem. Phys.
136
,
115102
(
2012
).
35.
L. A.
Pachon
and
P.
Brumer
,
Phys. Chem. Chem. Phys.
14
,
10094
(
2012
).
36.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
37.
N.
Makri
and
M.
Topaler
,
Chem. Phys. Lett.
210
,
285
(
1993
).
38.
R.
Kubo
and
M.
Toda
,
Statistical Physics II: Nonequilibrium Statistical Mechanics
, 2nd ed. (
Springer
,
1998
).
39.
U.
Muller
and
G.
Stock
,
J. Chem. Phys.
111
,
77
(
1999
).
40.
T.
Renger
,
V.
May
, and
O.
Kühn
,
Phys. Rep.
343
,
137
(
2001
).
41.
N.
Makri
,
Comput. Phys. Commun.
63
,
389
(
1991
).
42.
H.-T.
Chang
,
P.-P.
Zhang
, and
Y.-C.
Cheng
,
J. Chem. Phys.
139
,
224112
(
2013
).
43.
Y.-H.
Hwang-Fu
,
W.
Chen
, and
Y.-C.
Cheng
,
Chem. Phys.
447
,
46
(
2015
).
44.
Y.
Chang
and
Y.-C.
Cheng
,
J. Chem. Phys.
142
,
034109
(
2015
).
45.
R. E.
Fenna
and
B. W.
Matthews
,
Nature
258
,
573
(
1975
).
46.
D. E.
Tronrud
,
J.
Wen
,
L.
Gay
, and
R. E.
Blankenship
,
Photosynth. Res.
100
,
79
(
2009
).
47.
A.
Ishizaki
and
G. R.
Fleming
,
Proc. Natl. Acad. Sci. U. S. A.
106
,
17255
(
2009
).
48.
R.
Kubo
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
49.
L.
Chen
,
R.
Zheng
,
Y.
Jing
, and
Q.
Shi
,
J. Chem. Phys.
134
,
194508
(
2011
).
50.
S. J.
Cotton
and
W. H.
Miller
,
J. Phys. Chem. A
119
,
12138
(
2015
).
51.
W. H.
Miller
and
S. J.
Cotton
,
Faraday Discuss.
195
,
9
(
2016
).
52.
S. J.
Cotton
and
W. H.
Miller
,
J. Chem. Phys.
145
,
144108
(
2016
).
53.
S. J.
Cotton
and
W. H.
Miller
,
J. Chem. Theory Comput.
12
,
983
(
2016
).
54.
C.
Olbrich
,
J.
Struempfer
,
K.
Schulten
, and
U.
Kleinekathoefer
,
J. Phys. Chem. Lett.
2
,
1771
(
2011
).
55.
Y.
Jing
,
R.
Zheng
,
H.-X.
Li
, and
Q.
Shi
,
J. Phys. Chem. B
116
,
1164
(
2012
).
56.
L.
Zhang
,
D.-A.
Silva
,
H.
Zhang
,
A.
Yue
,
Y.
Yan
, and
X.
Huang
,
Nat. Commun.
5
,
4170
(
2014
).
57.
S.
Chandrasekaran
,
M.
Aghtar
,
S.
Valleau
,
A.
Aspuru-Guzik
, and
U.
Kleinekathöfer
,
J. Phys. Chem. B
119
,
9995
(
2015
).
You do not currently have access to this content.