Implicit solvation calculations based on a Stern-layer corrected size-modified Poisson-Boltzmann (SMPB) model are an effective approach to capture electrolytic effects in first-principles electronic structure calculations. For a given salt solution, they require a range of ion-specific parameters, which describe the size of the dissolved ions as well as thickness and shape of the Stern layer. Out of this defined parameter space, we show that the Stern layer thickness expressed in terms of the solute’s electron density and the resulting ionic cavity volume completely determine ion effects on the stability of neutral solutes. Using the efficient SMPB functionality of the full-potential density-functional theory package FHI-aims, we derive optimized such Stern layer parameters for neutral solutes in various aqueous monovalent electrolytes. The parametrization protocol relies on fitting to reference Setschenow coefficients that describe solvation free energy changes with ionic strength at low to medium concentrations. The availability of such data for NaCl solutions yields a highly predictive SMPB model that allows to recover the measured Setschenow coefficients with an accuracy that is comparable to prevalent quantitative regression models. Correspondingly derived SMPB parameters for other salts suffer from a much scarcer experimental data base but lead to Stern layer properties that follow a physically reasonable trend with ionic hydration numbers.

1.
J.
Tomasi
,
B.
Mennucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
3094
(
2005
).
2.
J. L.
Fattebert
and
F. J.
Gygi
,
J. Comput. Chem.
23
,
662
666
(
2002
).
3.
J. L.
Fattebert
and
F.
Gygi
,
Int. J. Quantum Chem.
93
,
139
147
(
2003
).
4.
D. A.
Scherlis
,
J. L.
Fattebert
,
F.
Gygi
,
M.
Cococcioni
, and
N.
Marzari
,
J. Chem. Phys.
124
,
074103
(
2006
).
5.
O.
Andreussi
,
I.
Dabo
, and
N.
Marzari
,
J. Chem. Phys.
136
,
064102
(
2012
).
6.
C. P.
Kelly
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
1
,
1133
1152
(
2005
).
7.
S.
Ringe
,
H.
Oberhofer
,
C.
Hille
,
S.
Matera
, and
K.
Reuter
,
J. Chem. Theory Comput.
12
,
4052
4066
(
2016
).
8.
R.
Jinnouchi
and
A. B.
Anderson
,
Phys. Rev. B
77
,
245417
(
2008
).
9.
G.
Fisicaro
,
L.
Genovese
,
O.
Andreussi
,
N.
Marzari
, and
S.
Goedecker
,
J. Chem. Phys.
144
,
014103
(
2016
).
10.
K.
Mathew
and
R. G.
Hennig
, e-print arXiv:1601.03346 (accessed 19 December 2016).
11.
G.
Gouy
,
J. Phys. Theor. Appl.
9
,
457
468
(
1910
).
12.
G.
Gouy
,
Ann. Phys. (Paris)
7
,
129
184
(
1917
).
13.
D.
Chapman
,
Philos. Mag.
25
,
475
481
(
1913
).
14.
P.
Debye
and
E.
Hückel
,
Phys. Z.
24
,
305
325
(
1923
).
15.
S. W. W.
Chen
and
B.
Honig
,
J. Phys. Chem. B
101
,
9113
9118
(
1997
).
16.
P.
Weetman
,
S.
Goldman
, and
C. G.
Gray
,
J. Phys. Chem. B
101
,
6073
6078
(
1997
).
17.
F.
Fogolari
,
A.
Brigo
, and
H.
Molinari
,
J. Mol. Recognit.
15
,
377
392
(
2002
).
18.
R. J.
Hunter
,
Foundations of Colloid Science
(
Oxford University Press
,
Oxford
,
2001
), pp.
304
402
.
19.
J.
Lipfert
,
V. B.
Chu
,
Y.
Bai
,
D.
Herschlag
, and
S.
Doniach
,
J. Appl. Crystallogr.
40
,
s229
s234
(
2007
).
20.
E. J. W.
Verwey
and
J. T. G.
Overbeek
,
Theory of the Stability of Lyophobic Colloids
(
Elsevier
,
Amsterdam
,
1948
).
21.
S.
Alexander
,
P. M.
Chaikin
,
P.
Grant
,
G. J.
Morales
,
P.
Pincus
, and
D.
Hone
,
J. Chem. Phys.
80
,
5776
5781
(
1984
).
22.
J. L.
Barrat
and
J. F.
Joanny
,
Adv. Chem. Phys.
94
,
1
66
(
1996
).
23.
J.
Lyklema
,
Fundamentals of Interface and Colloid Science, Volume II: Solid-Liquid Interfaces
(
Academic Press
,
San Diego
,
1995
), pp.
3.2
4.11
.
24.
D.
Harries
,
S.
May
,
W. M.
Gelbart
, and
A.
Ben-Shaul
,
Biophys. J.
75
,
159
173
(
1998
).
25.
I.
Borukhov
,
D.
Andelman
, and
H.
Orland
,
Macromolecules
31
,
1665
1671
(
1998
).
26.
D.
Andelman
, in
Structure and Dynamics of Membranes: From Cells to Vesicles
, Handbook of Biological Physics, edited by
R.
Lipowsky
and
E. S.
Sackmann
(
North-Holland
,
1995
), Vol. 1, Chap. 12, pp.
603
642
.
27.
K.
Letchworth-Weaver
and
T. A.
Arias
,
Phys. Rev. B
86
,
075140
(
2012
).
28.
D. J.
Tannor
,
B.
Marten
,
R.
Murphy
,
R. A.
Friesner
,
D.
Sitkoff
,
A.
Nicholls
,
M.
Ringnalda
,
W. A.
Goddard
, and
B.
Honig
,
J. Am. Chem. Soc.
116
,
11875
11882
(
1994
).
29.
Y.-H.
Fang
,
G.-F.
Wei
, and
Z.-P.
Liu
,
Catal. Today
202
,
98
104
(
2013
).
30.
M.
Otani
and
O.
Sugino
,
Phys. Rev. B
73
,
115407
(
2006
).
31.
K.
Chin
,
K. A.
Sharp
,
B.
Honig
, and
A. M.
Pyle
,
Nat. Struct. Mol. Biol.
6
,
1055
1061
(
1999
).
32.
V. B.
Chu
,
Y.
Bai
,
J.
Lipfert
,
D.
Herschlag
, and
S.
Doniach
,
Biophys. J.
93
,
3202
3209
(
2007
).
33.
N.
Wang
,
S.
Zhou
,
P. M.
Kekenes-Huskey
,
B.
Li
, and
J. A.
McCammon
,
J. Phys. Chem. B
118
,
14827
14832
(
2014
).
34.
N. A.
Baker
,
D.
Sept
,
S.
Joseph
,
M. J.
Holst
, and
J. A. P.
McCammon
,
Proc. Natl. Acad. Sci. U. S. A.
98
,
10037
10041
(
2001
).
35.
M. K.
Gilson
,
K. A.
Sharp
, and
B. H.
Honig
,
J. Comput. Chem.
9
,
327
335
(
1988
).
36.
I.
Borukhov
,
D.
Andelman
, and
H.
Orland
,
Electrochim. Acta
46
,
221
229
(
2000
).
37.
I.
Borukhov
,
D.
Andelman
, and
H.
Orland
,
Phys. Rev. Lett.
79
,
435
438
(
1997
).
38.
A. H.
Boschitsch
and
P. V.
Danilov
,
J. Comput. Chem.
33
,
1152
1164
(
2012
).
39.
J. H.
Chaudhry
,
S. D.
Bond
, and
L. N.
Olson
,
J. Sci. Comput.
47
,
347
364
(
2011
).
40.
V.
Kralj-Iglic
and
A.
Iglic
,
J. Phys. II
6
,
477
491
(
1996
).
41.
S.
Zhou
,
Z.
Wang
, and
B.
Li
,
Phys. Rev. E
84
,
021901
(
2011
).
42.
A.
Abrashkin
,
D.
Andelman
, and
H.
Orland
,
Phys. Rev. Lett.
99
,
077801
(
2007
).
43.
G.
Tresset
,
Phys. Rev. E
78
,
061506
(
2008
).
44.
A. R.
Silalahi
,
A. H.
Boschitsch
,
R. C.
Harris
, and
M. O.
Fenley
,
J. Chem. Theory Comput.
6
,
3631
3639
(
2010
).
45.
G. J.
Bartlett
,
C. T.
Porter
,
N.
Borkakoti
, and
J. M.
Thornton
,
J. Mol. Biol.
324
,
105
121
(
2002
).
46.
O.
Stern
,
Z. Elektrochem. Angew.
30
,
508
516
(
1924
).
47.
M. Y.
Kiriukhin
and
K. D.
Collins
,
Biophys. Chem.
99
,
155
168
(
2002
).
48.
M. A.
Brown
,
A.
Goel
, and
Z.
Abbas
,
Angew. Chem., Int. Ed.
55
,
3790
3794
(
2016
).
49.
L.
Li
,
C. J.
Fennell
, and
K. A.
Dill
,
J. Chem. Phys.
141
,
22D518
(
2014
).
50.
B.
Honig
and
A.
Nicholls
,
Science
268
,
1144
1149
(
1995
).
51.
Y.-H.
Fang
and
Z.-P.
Liu
,
J. Am. Chem. Soc.
132
,
18214
18222
(
2010
).
52.
H.-F.
Wang
and
Z.-P.
Liu
,
J. Phys. Chem. C
113
,
17502
17508
(
2009
).
53.
R.
Jinnouchi
,
K.
Kodama
,
T.
Hatanaka
, and
Y.
Morimoto
,
Phys. Chem. Chem. Phys.
13
,
21070
21083
(
2011
).
54.
D.
Boda
,
W. R.
Fawcett
,
D.
Henderson
, and
S.
Sokołowski
,
J. Chem. Phys.
116
,
7170
7176
(
2002
).
55.
K.
Bohinc
,
A.
Shrestha
,
M.
Brumen
, and
S.
May
,
Phys. Rev. E
85
,
031130
(
2012
).
56.
Y. X.
Yu
,
J. Z.
Wu
, and
G. H.
Gao
,
J. Chem. Phys.
120
,
7223
7233
(
2004
).
57.
J.
Cervera
,
P.
Ramirez
,
J. A.
Manzanares
, and
S.
Mafe
,
Microfluid. Nanofluid.
9
,
41
53
(
2010
).
58.
M. S.
Kilic
,
M. Z.
Bazant
, and
A.
Ajdari
,
Phys. Rev. E
75
,
021503
(
2007
).
59.
D.
Antypov
,
M. C.
Barbosa
, and
C.
Holm
,
Phys. Rev. E
71
,
061106
(
2005
).
60.
M.
Boström
,
F. W.
Tavares
,
D.
Bratko
, and
B. W.
Ninham
,
J. Phys. Chem. B
109
,
24489
24494
(
2005
).
61.
M. O.
Fenley
,
R. C.
Harris
,
B.
Jayaram
, and
A. H.
Boschitsch
,
Biophys. J.
99
,
879
886
(
2010
).
62.
S.
Kirmizialtin
,
A. R.
Silalahi
,
R.
Elber
, and
M. O.
Fenley
,
Biophys. J.
102
,
829
838
(
2012
).
63.
R. C.
Harris
,
A. H.
Boschitsch
, and
M. O.
Fenley
,
J. Chem. Phys.
140
,
075102
(
2014
).
64.
I.
Sechenow
,
Ann. Chim. Phys.
25
,
226
(
1892
).
65.
F.
Long
and
W.
McDevit
,
Chem. Rev.
51
,
119
169
(
1952
).
66.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
2196
(
2009
).
67.
X.
Ren
,
P.
Rinke
,
V.
Blum
,
J.
Wieferink
,
A.
Tkatchenko
,
A.
Sanfilippo
,
K.
Reuter
, and
M.
Scheffler
,
New J. Phys.
14
,
053020
(
2012
).
68.
V. L.
Shapovalov
and
G. J.
Brezesinski
,
Phys. Chem. B
110
,
10032
10040
(
2006
).
69.
B.
Jayaram
,
S.
Swaminathan
,
D.
Beveridge
,
K.
Sharp
, and
B.
Honig
,
Macromolecules
23
,
3156
3165
(
1990
).
70.
D. J.
Bonthuis
and
R. R.
Netz
,
J. Phys. Chem. B
117
,
11397
11413
(
2013
).
71.
Y.
Marcus
,
Ions in Solution and their Solvation
(
Wiley
,
New Jersey, USA
,
2015
), pp.
141
146
.
72.
B. W.
Ninham
,
T. T.
Duignan
, and
D. F.
Parsons
,
Curr. Opin. Colloid Interface Sci.
16
,
612
617
(
2011
).
73.
D. F.
Parsons
and
B. W.
Ninham
,
Colloids Surf., A
383
,
2
9
(
2011
).
74.
D. F.
Parsons
,
M.
Boström
,
P. L.
Nostro
, and
B. W.
Ninham
,
Phys. Chem. Chem. Phys.
13
,
12352
12367
(
2011
).
75.
M.
Boström
,
D. R. M.
Williams
, and
B. W.
Ninham
,
Langmuir
17
,
4475
4478
(
2001
).
76.
M.
Boström
,
D.
Williams
, and
B. W.
Ninham
,
Biophys. J.
85
,
686
694
(
2003
).
77.
X.
Pang
and
H.-X.
Zhou
,
Commun. Comput. Phys.
13
,
1
12
(
2013
).
78.
F.
Dong
,
M.
Vijayakumar
, and
H.-X.
Zhou
,
Biophys. J.
85
,
49
60
(
2003
).
79.
P.
Pérez-Tejeda
,
A.
Maestre
,
M.
Balón
,
J.
Hidalgo
,
M. A.
Muñoz
, and
M.
Sánchez
,
J. Chem. Soc., Faraday Trans. 1
83
,
1029
1039
(
1987
).
80.
A.
Burant
,
G. V.
Lowry
, and
A. K.
Karamalidis
,
Chemosphere
144
,
2247
2256
(
2016
).
81.
D. F.
Keeley
,
M. A.
Hoffpauir
, and
J. R.
Meriwether
,
J. Chem. Eng. Data
33
,
87
89
(
1988
).
82.
E. M.
Waxman
,
J.
Elm
,
T.
Kurtén
,
K. V.
Mikkelsen
,
P. J.
Ziemann
, and
R.
Volkamer
,
Environ. Sci. Technol.
49
,
11500
11508
(
2015
).
83.
P.
Debye
and
I.
MacAulay
,
Phys. Z.
131
,
22
29
(
1925
).
84.
W.-H.
Xie
,
W.-Y.
Shiu
, and
D.
Mackay
,
Mar. Environ. Res.
44
,
429
444
(
1997
).
85.
S.
Endo
,
A.
Pfennigsdorff
, and
K.-U.
Goss
,
Environ. Sci. Technol.
46
,
1496
1503
(
2012
).
86.
N.
Ni
and
S. H.
Yalkowsky
,
Int. J. Pharm.
254
,
167
172
(
2003
).
87.
W.
Xie
,
H.
Ji
, and
W.
Li
,
Acta Phys.-Chim. Sin.
1
,
304
307
(
1985
).
88.
M. A.
Paul
,
J. Am. Chem. Soc.
74
,
5274
5277
(
1952
).
89.
H.
Kruyt
and
C.
Robinson
,
Proc. Acad. Sci. Amsterdam
29
,
1244
(
1926
).
90.
R. L.
Bergen
and
F. A.
Long
,
J. Phys. Chem.
60
,
1131
1135
(
1956
).
91.
A.
Osol
and
M.
Kilpatrick
,
J. Am. Chem. Soc.
55
,
4430
4440
(
1933
).
92.
J. N.
Sugden
,
J. Chem. Soc.
129
,
174
196
(
1926
).
93.
W.
Herz
and
E.
Stanner
,
Z. Phys. Chem.
128
,
399
(
1927
).
94.
P.
Groß
and
K.
Schwarz
,
Monatsh. Chem. Verw. Teile Anderer Wiss.
55
,
287
306
(
1930
).
95.
W. L.
Masterton
and
T. P.
Lee
,
Environ. Sci. Technol.
6
,
919
921
(
1972
).
96.
A.
Al-Maaieh
and
D. R.
Flanagan
,
J. Pharm. Sci.
91
,
1000
1008
(
2002
).
97.
F. I.
El-Dossoki
,
J. Chem.
2016
,
1
8
.
98.
M.
Randall
and
C. F.
Failey
,
Chem. Rev.
4
,
285
290
(
1927
).
99.
M.
Randall
and
C. F.
Failey
,
Chem. Rev.
4
,
271
284
(
1927
).
100.
M.
Randall
and
C. F.
Failey
,
Chem. Rev.
4
,
291
318
(
1927
).
101.
A. G.
Leiga
and
J. N.
Sarmousakis
,
J. Phys. Chem.
70
,
3544
3549
(
1966
).
102.
J. C.
Philip
and
A.
Bramley
,
J. Chem. Soc., Trans.
107
,
377
387
(
1915
).
103.
T. J.
Morrison
and
F.
Billett
,
J. Chem. Soc.
1952
,
3819
3822
.
104.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
105.
W. E.
May
,
S. P.
Wasik
, and
D. H.
Freeman
,
Anal. Chem.
50
,
997
1000
(
1978
).
106.
G.
Gold
and
S.
Rodriguez
,
Can. J. Chemistry
67
,
822
826
(
1989
).
107.
R. R.
Netz
and
H.
Orland
,
Euro. Phys. J. E
1
,
203
214
(
2000
).
108.
Q.
Xu
,
L.
Fan
, and
J.
Xu
,
Maced. J. Chem. Chem. Eng.
35
,
53
62
(
2016
).
109.
X.
Yu
and
R.
Yu
,
Ind. Eng. Chem. Res.
52
,
11182
11188
(
2013
).
110.
Y.
Li
,
Q.
Hu
, and
C.
Zhong
,
Ind. Eng. Chem. Res.
43
,
4465
4468
(
2004
).
111.
R.
Carta
and
G.
Tola
,
J. Chem. Eng. Data
41
,
414
417
(
1996
).
112.
A.
Levy
,
D.
Andelman
, and
H.
Orland
,
Phys. Rev. Lett.
108
,
227801
(
2012
).
113.
H.
Li
and
B.
Lu
,
J. Chem. Phys.
141
,
024115
(
2014
).
114.
Y.
Nakayama
and
D.
Andelman
,
J. Chem. Phys.
142
,
044706
(
2015
).
115.
H.
Shang
,
C.
Carbogno
,
P.
Rinke
, and
M.
Scheffler
, “
Lattice dynamics calculations based on density-functional perturbation theory in real space
,”
Comput. Phys. Commun.
(in press).
116.
Y.
Marcus
,
Ions in Solution and their Solvation
(
Wiley
,
New Jersey, USA
,
2015
), pp.
145
146
.
117.
H.
Ohtaki
,
Monatsh. Chem.
132
,
1237
1268
(
2001
).
118.
Y.
Marcus
,
Chem. Rev.
88
,
1475
1498
(
1988
).

Supplementary Material

You do not currently have access to this content.