The fragmentation of multiply charged clusters composed of N1000 Lennard-Jones particles augmented with electrostatic interactions is explored by classical Monte Carlo and molecular dynamics simulations with the stated goal of establishing possible analogies with electrospray droplets. Clusters with few charge carriers are shown to be only subject to particle ejection and their Rayleigh limit can be estimated by quantifying the loss of charged particles. On the contrary, uniformly charged clusters can both evaporate particles and undergo fission, making them better candidates to model electrospray droplets. Critical charges delimiting regions of instability of these clusters are defined from the calculation of lower order multipole moments and asymmetry parameters based on the knowledge of moments of inertia. The first discontinuity of quadrupole moments and asymmetry parameters is related to cluster elongation before twofold fission and the corresponding charge is deemed to be a good estimate of the Rayleigh limit. Octopole moments are negligible about this charge, their discontinuities arising at higher charges when threefold fissions are allowed. The size dependence of these critical charges is qualitatively predicted from Rayleigh’s formula and the expression of surface energy advocated in liquid drop models. Deviations below 15% are commonly achieved when comparing Rayleigh limits extracted from experimental data with theoretical predictions based on Monte Carlo simulations or liquid drop models for a set of eleven atomic and molecular liquid clusters. Although manifold fission of uniformly charged clusters is unlikely close to the Rayleigh limit, successive asymmetric fissions are found to occur in conjunction with other fragmentation mechanisms, including the expansion of ring-shaped structures, at charges more than twice as large as the Rayleigh limit.

1.
L.
Rayleigh
,
Philos. Mag.
14
,
184
(
1882
).
2.
P. A.
Butler
and
W.
Nazarewicz
,
Rev. Mod. Phys.
68
,
349
(
1996
).
3.
U.
Näher
,
S.
Bjornholm
,
S.
Frauendorf
,
F.
Garcias
, and
C.
Guet
,
Phys. Rep.
285
,
245
(
1997
).
4.
O.
Echt
,
D.
Kreisle
,
E.
Recknagel
,
J. J.
Saenz
,
R.
Casero
, and
J. M.
Soler
,
Phys. Rev. A
38
,
3236
(
1988
).
5.
J. B.
Fenn
,
Angew. Chem., Int. Ed.
42
,
3871
(
2003
).
6.
X.
Chen
,
E.
Bichoutskaia
, and
A. J.
Stace
,
J. Phys. Chem. A
117
,
3877
(
2013
).
7.
R.
Casero
,
J. J.
Sáenz
, and
J. M.
Soler
,
Phys. Rev. A
37
,
1401
(
1988
).
8.
M.
Nakamura
,
Chem. Phys. Lett.
449
,
1
(
2007
).
9.
F.
Calvo
,
J. Phys. Chem. Lett.
1
,
2637
(
2010
).
10.
I.
Mähr
,
F.
Zappa
,
S.
Denifl
,
D.
Kubala
,
O.
Echt
,
T. D.
Märk
, and
P.
Scheier
,
Phys. Rev. Lett.
98
,
023401
(
2007
).
11.
J. L. P.
Benesch
,
B. T.
Ruotolo
,
D. A.
Simmons
, and
C. V.
Robinson
,
Chem. Rev.
107
,
3544
(
2007
).
12.
J.
Laskin
,
A.
Laskin
, and
S. A.
Nizkorodov
,
Int. Rev. Phys. Chem.
32
,
128
(
2013
).
13.
J. V.
Iribarne
and
B. A.
Thomson
,
J. Chem. Phys.
64
,
2287
(
1976
).
14.
M.
Dole
,
L. L.
Mack
,
R. L.
Hines
,
R. C.
Mobley
,
L. D.
Ferguson
, and
M. B.
Alice
,
J. Chem. Phys.
49
,
2240
(
1968
).
16.
P.
Kebarle
and
M.
Peschke
,
Anal. Chim. Acta
406
,
11
(
2000
).
18.
J.
Fernandez de la Mora
,
Anal. Chim. Acta
406
,
93
(
2000
).
19.
I.
Last
,
Y.
Levy
, and
J.
Jortner
,
J. Chem. Phys.
123
,
154301
(
2005
).
20.
F.
Calvo
,
Phys. Rev. A
74
,
043202
(
2006
).
21.
M. A.
Miller
,
D. A.
Bonhommeau
,
C. P.
Moerland
,
S. J.
Gray
, and
M.-P.
Gaigeot
,
Mol. Phys.
113
,
2428
(
2015
).
22.
D. A.
Bonhommeau
,
Comput. Phys. Commun.
207
,
533
(
2016
).
23.
D. J.
Earl
and
M. W.
Deem
,
Phys. Chem. Chem. Phys.
7
,
3910
(
2005
).
24.
J. P.
Neirotti
,
F.
Calvo
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
112
,
10340
(
2000
).
25.
D. J.
Wales
and
J. P. K.
Doye
,
J. Phys. Chem. A
101
,
5111
(
1997
).
26.
Y.
Xiang
,
H.
Jiang
,
W.
Cai
, and
X.
Shao
,
J. Phys. Chem. A
108
,
3586
(
2004
).
27.
Y.
Xiang
,
L.
Cheng
,
W.
Cai
, and
X.
Shao
,
J. Phys. Chem. A
108
,
9516
(
2004
).
28.
E. G.
Noya
and
J. P. K.
Doye
,
J. Chem. Phys.
124
,
104503
(
2006
).
29.
E.
Pahl
,
F.
Calvo
,
L.
Koči
, and
P.
Schwerdtfeger
,
Angew. Chem., Int. Ed.
47
,
8207
(
2008
).
30.
P.
Schwerdtfeger
,
N.
Gaston
,
R. P.
Krawczyk
,
R.
Tonner
, and
G. E.
Moyano
,
Phys. Rev. B
73
,
064112
(
2006
).
31.
D. A.
Bonhommeau
and
M.-P.
Gaigeot
,
Comput. Phys. Commun.
184
,
873
(
2013
).
32.
D. A.
Bonhommeau
,
M.
Lewerenz
, and
M.-P.
Gaigeot
,
Comput. Phys. Commun.
185
,
1188
(
2014
).
33.
D. A.
Bonhommeau
,
R.
Spezia
, and
M.-P.
Gaigeot
,
J. Chem. Phys.
136
,
184503
(
2012
).
34.
M. A.
Miller
,
D. A.
Bonhommeau
,
C. J.
Heard
,
Y.
Shin
,
R.
Spezia
, and
M.-P.
Gaigeot
,
J. Phys.: Condens. Matter
24
,
284130
(
2012
).
35.
D. L.
Hill
and
J. A.
Wheeler
,
Phys. Rev.
89
,
1102
(
1953
).
36.
C. E.
Bemis
,
F. K.
McGowan
,
J. L. C.
Ford
,
W. T.
Milner
,
P. H.
Stelson
, and
R. L.
Robinson
,
Phys. Rev. C
8
,
1466
(
1973
).
37.
A. J.
Stone
,
The Theory of Intermolecular Forces
(
Oxford University Press
,
Oxford, United Kingdom
,
2002
).
38.
E. B.
Wilson
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations, The Theory of Infrared and Raman Vibrational Spectra
(
Dover Publications
,
Mineola, NY
,
1980
).
39.
D. A.
Bonhommeau
and
M.-P.
Gaigeot
,
Comput. Phys. Commun.
185
,
684
(
2014
).
40.
D.
Kreisle
,
O.
Echt
,
M.
Knapp
,
E.
Recknagel
,
K.
Leiter
,
T.
Märk
,
J.
Sáenz
, and
J.
Soler
,
Phys. Rev. Lett.
56
,
1551
(
1986
).
41.
L.
Briant
and
J. J.
Burton
,
J. Chem. Phys.
63
,
2045
(
1975
).
42.
V. V.
Zakharov
,
E. N.
Brodskaya
, and
A.
Laaksonen
,
J. Chem. Phys.
107
,
10675
(
1997
).
43.
CRC Handbook of Chemistry and Physics
, Internet Version 2005, 85th ed., edited by
D. R.
Lide
(
CRC Press
,
Boca Raton, FL
,
2005
), http://hbcpnetbase.com.
44.
R. T.
Jacobsen
,
S. G.
Penoncello
, and
E. W.
Lemmon
,
Thermodynamic Properties of Cryogenic Fluids
(
Plenum Press
,
New York, NY
,
1997
).
45.
Y. S.
Won
,
D. K.
Chung
, and
A. F.
Mills
,
J. Chem. Eng. Data
26
,
140
(
1981
).
46.
A.
Ferguson
and
S. J.
Kennedy
,
Trans. Faraday Soc.
32
,
1474
(
1936
).
47.
F. B.
Sprow
and
J. M.
Prausnitz
,
Trans. Faraday Soc.
62
,
1097
(
1966
).
48.
B. L.
Smith
,
P. R.
Gardner
, and
E. H. C.
Parker
,
J. Chem. Phys.
47
,
1148
(
1967
).
49.
S.
Fuks
and
A.
Bellemans
,
Physica
32
,
594
(
1966
).
50.
C. P.
Herrero
,
Phys. Rev. B
65
,
014112
(
2001
).
51.
L. A.
Rowley
,
D.
Nicholson
, and
N. G.
Parsonage
,
J. Comput. Phys.
17
,
401
(
1975
).
52.
N.
Ohtori
and
Y.
Ishii
,
Phys. Rev. E
91
,
012111
(
2015
).
53.
S.
Consta
,
J. Phys. Chem. B
114
,
5263
(
2010
).
54.
Y.
Levy
,
I.
Last
, and
J.
Jortner
,
Mol. Phys.
104
,
1227
(
2006
).
55.
E.
Ahadi
and
L.
Konermann
,
J. Am. Chem. Soc.
132
,
11270
(
2010
).
56.
L.
Konermann
,
R. G.
McAllister
, and
H.
Metwally
,
J. Phys. Chem. B
118
,
12025
(
2014
).
57.
R. G.
McAllister
,
H.
Metwally
,
Y.
Sun
, and
L.
Konermann
,
J. Am. Chem. Soc.
137
,
12667
(
2015
).
58.
S.
Consta
,
K. R.
Mainer
, and
W.
Novak
,
J. Chem. Phys.
119
,
10125
(
2003
).

Supplementary Material

You do not currently have access to this content.