The numerical analysis of the diffraction features rendered by transmission electron microscopy typically relies either on classical approximations (Monte Carlo simulations) or quantum paraxial tomography (the multislice method and any of its variants). Although numerically advantageous (relatively simple implementations and low computational costs), they involve important approximations and thus their range of applicability is limited. To overcome such limitations, an alternative, more general approach is proposed, based on an optimal combination of wave-packet propagation with the on-the-fly computation of associated Bohmian trajectories. For the sake of clarity, but without a loss of generality, the approach is used to analyze the diffraction of an electron beam by a thin aluminum slab as a function of three different incidence (working) conditions which are of interest in electron microscopy: the probe width, the tilting angle, and the beam energy. Specifically, it is shown that, because there is a dependence on particular thresholds of the beam energy, this approach provides a clear description of the diffraction process at any energy, revealing at the same time any diversion of the beam inside the material towards directions that cannot be accounted for by other conventional methods, which is of much interest when dealing with relatively low energies and/or relatively large tilting angles.

1.
D.
Williams
and
C.
Carter
,
Transmission Electron Microscopy: A Textbook for Materials Science
, Cambridge Library Collection, Vol. 1 (
Springer
,
2009
), ISBN: 9780387765006,URL: http://books.google.ca/books?id=dXdrG39VtUoC.
2.
J.
Kirkland
,
Advanced Computing in Electron Microscopy
(
Springer
,
USA
,
2010
), ISBN: 9781441965332,URL: https://books.google.ca/books?id=YscLlyaiNvoC.
3.
K.
Mitsuishi
,
K.
Iakoubovskii
,
M.
Takeguchi
,
M.
Shimojo
,
A.
Hashimoto
, and
K.
Furuya
,
Ultramicroscopy
108
,
981
(
2008
).
4.
S. J.
Pennycook
and
D. E.
Jesson
,
Phys. Rev. Lett.
64
,
938
(
1990
).
5.
K.
Watanabe
,
T.
Yamazaki
,
I.
Hashimoto
, and
M.
Shiojiri
,
Phys. Rev. B
64
,
115432
(
2001
).
6.
E. J.
Kirkland
,
R. F.
Loane
, and
J.
Silcox
,
Ultramicroscopy
23
,
77
(
1987
).
7.
A.
Gómez-Rodríguez
,
L.
Beltrán-del Río
, and
R.
Herrera-Becerra
,
Ultramicroscopy
110
,
95
(
2010
).
8.
J.
Goldstein
,
Scanning Electron Microscopy and X-Ray Microanalysis: Third Edition
(
Plenum
,
2003
), ISBN: 9780306472923,URL: https://books.google.ca/books?id=ruF9DQxCDLQC.
10.
R.
Gauvin
,
E.
Lifshin
,
H.
Demers
,
P.
Horny
, and
H.
Campbell
,
Microsc. Microanal.
12
,
49
(
2006
).
11.
X.
Llovet
,
F.
Salvat
, and
M. J.
Fernández-Varea
,
Microchim. Acta
145
,
111
(
2004
).
12.
D.
Joy
,
Monte Carlo Modeling for Electron Microscopy and Microanalysis
, Oxford Series in Optical and Imaging Sciences (
Oxford University Press
,
1995
), ISBN: 9780195358469,URL: https://books.google.ca/books?id=5u-W9US9BqIC.
13.
P.
Echlin
,
C.
Fiori
,
J.
Goldstein
,
D.
Joy
, and
D.
Newbury
,
Advanced Scanning Electron Microscopy and X-Ray Microanalysis
(
Springer
,
USA
,
2013
), ISBN: 9781475790276,URL: https://books.google.ca/books?id=BonSBwAAQBAJ.
14.
A. S.
Sanz
and
S.
Miret-Artés
,
A Trajectory Description of Quantum Processes. I. Fundamentals: A Bohmian Perspective
, Lecture Notes in Physics (
Springer
,
Berlin, Heidelberg
,
2012
), ISBN: 9783642180927,URL: https://books.google.ca/books?id=zR24BAAAQBAJ.
15.
A. S.
Sanz
,
F.
Borondo
, and
S.
Miret-Artés
,
Phys. Rev. B
61
,
7743
(
2000
).
16.
A. S.
Sanz
,
F.
Borondo
, and
S.
Miret-Artés
,
J. Phys.: Condens. Matter
14
,
6109
(
2002
).
17.
A. S.
Sanz
,
F.
Borondo
, and
S.
Miret-Artés
,
Europhys. Lett.
55
,
303
(
2001
).
18.
A. S.
Sanz
,
F.
Borondo
, and
S.
Miret-Artés
,
J. Chem. Phys.
120
,
8794
(
2004
).
19.
A. S.
Sanz
,
F.
Borondo
, and
S.
Miret-Artés
,
Phys. Rev. B
69
(
1
),
115413
(
2004
).
20.
R.
Guantes
,
A. S.
Sanz
,
J.
Margalef-Roig
, and
S.
Miret-Artés
,
Surf. Sci. Rep.
53
,
199
(
2004
).
21.
A. S.
Sanz
and
S.
Miret-Artés
,
J. Chem. Phys.
126
,
234106
(
2007
).
22.
M.
Zhang
,
Y.
Ming
,
R. G.
Zeng
, and
Z. J.
Ding
,
J. Microsc.
260
,
200
(
2015
).
23.
A. S.
Sanz
and
S.
Miret-Artés
,
A Trajectory Description of Quantum Processes. II. Applications: A Bohmian Perspective
, Lecture Notes in Physics (
Springer
,
Berlin, Heidelberg
,
2014
), ISBN: 9783642179747,URL: https://books.google.ca/books?id=Lya7BQAAQBAJ.
25.
L. I.
Schiff
,
Quantum Mechanics
, 3rd ed. (
McGraw-Hill
,
Singapore
,
1968
).
26.
A.
Howie
and
Z. S.
Basinski
,
Philos. Mag.
17
,
1039
(
1968
).
27.
C.
Trahan
and
R.
Wyatt
,
Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics
, Interdisciplinary Applied Mathematics (
Springer
,
2006
), ISBN: 9780387281452,URL: http://books.google.ca/books?id=lvg5CBaWHPoC.
28.
M.
Feit
,
J.
Fleck
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
).
29.
M. D.
Feit
and
J. J. A.
Fleck
,
J. Chem. Phys.
78
,
301
(
1983
).
30.
R.
Kosloff
and
D.
Kosloff
,
J. Chem. Phys.
79
,
1823
(
1983
).
31.
D.
Kosloff
and
R.
Kosloff
,
J. Comput. Phys.
52
,
35
(
1983
).
32.
C.
Leforestier
,
R. H.
Bisseling
,
C.
Cerjan
,
M. D.
Feit
,
R.
Friesner
,
A.
Guldberg
,
A.
Hammerich
,
G.
Jolicard
,
W.
Karrlein
,
H.-D.
Meyer
 et al,
J. Comput. Phys.
94
,
59
(
1991
).
33.
J. Z. H.
Zhang
,
Theory and Application of Quantum Molecular Dynamics
(
World Scientific
,
Singapore
,
1999
).
34.
D.
Tannor
,
Introduction to Quantum Mechanics: A Time-Dependent Perspective
(
University Science Books
,
2007
), ISBN: 9781891389238,URL: https://books.google.ca/books?id=t7m08j3Wi9YC.
35.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in Fortran 90: The Art of Parallel Scientific Computing
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1996
), Vol. 2.
36.
A. S.
Sanz
and
S.
Miret-Artés
,
J. Phys. A: Math. Theor.
44
,
485301
(
2011
).
38.
L.-M.
Peng
,
G.
Ren
,
S. L.
Dudarev
, and
M. J.
Whelan
,
Acta Crystallogr., Sect. A: Found. Crystallogr.
52
,
456
(
1996
).
39.
E.
Brandes
and
G.
Brook
,
Smithells Metals Reference Book
, 7th ed. (
Elsevier
,
1998
).
40.
P. R.
Holland
,
The Quantum Theory of Motion
(
Cambridge University Press
,
Cambridge
,
1993
).
41.
A. S.
Sanz
and
S.
Miret-Artés
,
J. Phys. A: Math. Theor.
41
,
435303
(
2008
).
42.
G.
Cliff
and
G. W.
Lorimer
,
Proceedings of The Conference on Quantitative microanalysis with high spatial resolution
, (
Metals Society
,
London
,
1981
), Book 277, p. 47.
43.
D.
Bohm
,
Quantum Theory
, Dover Books in Science and Mathematics (
Prentice-Hall
,
1951
), ISBN: 9780486659695,URL: https://books.google.ca/books?id=-vhCqN2twGQC.
44.
N.
Brodusch
,
H.
Demers
, and
R.
Gauvin
,
J. Microsc.
250
,
1
(
2013
).
45.
W.
Elmore
and
M.
Heald
,
Physics of Waves
, Dover Books on Physics Series (
Dover Publications
,
1969
), ISBN: 9780486649269,URL: https://books.google.ca/books?id=SLFCpTaEoDAC.
46.
N.
Brodusch
,
M.
Trudeau
,
P.
Michaud
,
L.
Rodrigue
,
J.
Boselli
, and
R.
Gauvin
,
Microsc. Microanal.
18
,
1393
(
2012
).
You do not currently have access to this content.