Despite the innumerous papers regarding the study of the ionic liquids as a potential candidate for CO2 capture, many details concerning the structure and dynamics of CO2 in the system are still to be revealed, i.e., the correlation between the local environment structure and the dynamic properties of the substance. This present work relied on the performance of molecular dynamics both for the neat [C2mim][Tf2N] and [C2mim][Tf2N]/CO2 mixtures in an attempt to elucidate the local environment of CO2 and their effects on the dynamic properties of [C2mim][Tf2N]. A slight change in the orientation of the cation and anion could be observed, which was correlated to the cation and anion moving away from each other in order to receive the carbon dioxide. The gas molecules pushed both the cation and the anion away to create sufficient void to its accommodation. The diffusion coefficient of [C2mim]+ is higher than [Tf2N] regardless the increase of the CO2 concentration. The addition of CO2 in the ionic liquid has shown an increase of 4-5 times for the diffusivity of ions, which was related to the decrease of cation-anion interaction strength. The transport properties’ results showed that the addition of CO2 in the ionic liquid generates the fluidization of the system, decreasing the viscosity as a consequence of the local environment structure changing. Likewise, the effect of the type of anion and cation on the system properties was studied considering [Ac] and [BMpyr]+ ions, showing large effects by the change of anion to [Ac] which rise from the strong [C2mim]+–[Ac] interaction, which conditions the solvation of ions by CO2 molecules.

1.
J. D.
Shakun
,
P. U.
Clark
,
F.
He
,
S. A.
Marcott
,
A. C.
Mix
,
Z.
Liu
,
B.
Otto-Bliesner
,
A.
Schmittner
, and
E.
Bard
,
Nature
484
,
49
(
2012
).
2.
V.
Scott
,
S.
Gilfillan
,
N.
Markusson
,
H.
Chalmers
, and
R. S.
Haszeldine
,
Nat. Clim. Change
3
,
105
(
2012
).
3.
J. R.
Li
,
Y.
Ma
,
M. C.
McCarthy
,
J.
Sculley
,
J.
Yu
,
H. K.
Jeong
,
P. B.
Balbuena
, and
H. C.
Zhou
,
Coord. Chem. Rev.
255
,
1791
(
2011
).
4.
World Meteorological Organization
, World Meteorological Organization, 2014, p.
1
.
5.
R.K.P. and L.A.M. Core Writing Team and IPCC
,
Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Chang
,
Geneva, Switzerland
,
2014
.
6.
C.
Cadena
,
J. L.
Anthony
,
J. K.
Shah
,
T. I.
Morrow
,
J. F.
Brennecke
, and
E. J.
Maginn
,
J. Am. Chem. Soc.
126
,
5300
(
2004
).
7.
J. F.
Brennecke
and
B. E.
Gurkan
,
J. Phys. Chem. Lett.
1
,
3459
(
2010
).
8.
Y.
Chen
,
Z.
Hu
,
K. M.
Gupta
, and
J.
Jiang
,
J. Phys. Chem. C
115
,
21736
(
2011
).
9.
K. M.
Gupta
,
Y.
Chen
, and
J.
Jiang
,
J. Phys. Chem. C
117
,
5792
(
2013
).
10.
K. M.
Gupta
,
Y.
Chen
,
Z.
Hu
, and
J.
Jiang
,
Phys. Chem. Chem. Phys.
14
,
5785
(
2012
).
11.
B.
Li
,
Y.
Duan
,
D.
Luebke
, and
B.
Morreale
,
Appl. Energy
102
,
1439
(
2013
).
12.
J. D.
Figueroa
,
T.
Fout
,
S.
Plasynski
,
H.
McIlvried
, and
R. D.
Srivastava
,
Int. J. Greenhouse Gas Control
2
,
9
(
2008
).
13.
H.
Yang
,
Z.
Xu
,
M.
Fan
,
R.
Gupta
,
R. B.
Slimane
,
A. E.
Bland
, and
I.
Wright
,
J. Environ. Sci.
20
,
14
(
2008
).
14.
D. M.
D’Alessandro
,
B.
Smit
, and
J. R.
Long
,
Angew. Chem., Int. Ed.
49
,
6058
(
2010
).
15.
F.
Karadas
,
M.
Atilhan
, and
S.
Aparicio
,
Energy Fuels
24
,
5817
(
2010
).
16.
D. A.
Swapnil
,
Res. J. Chem. Sci.
2
,
80
(
2012
).
17.
Z.
Lei
,
C.
Dai
, and
B.
Chen
,
Chem. Rev.
114
,
1289
(
2014
).
18.
D. R.
MacFarlane
,
N.
Tachikawa
,
M.
Forsyth
,
J. M.
Pringle
,
P. C.
Howlett
,
G. D.
Elliott
,
J. H.
Davis
,
M.
Watanabe
,
P.
Simon
, and
C. A.
Angell
,
Energy Environ. Sci.
7
,
232
(
2014
).
19.
M.
Ramdin
,
T. W.
De Loos
, and
T. J. H.
Vlugt
,
Ind. Eng. Chem. Res.
51
,
8149
(
2012
).
20.
L. C.
Tomé
and
I. M.
Marrucho
,
Chem. Soc. Rev.
45
,
2785
(
2016
).
22.
L. A.
Blanchard
and
D.
Hancu
,
Nature
399
,
28
(
1999
).
23.
P. J.
Carvalho
,
T.
Regueira
,
J.
Fernández
,
L.
Lugo
,
J.
Safarov
,
E.
Hassel
, and
J. a. P.
Coutinho
,
J. Supercrit. Fluids
88
,
46
(
2014
).
24.
S.
Aki
,
B. R.
Mellein
,
E. M.
Saurer
, and
J. F.
Brennecke
,
J. Phys. Chem. B
108
,
20355
(
2004
).
25.
B. L.
Bhargava
and
S.
Balasubramanian
,
Chem. Phys. Lett.
444
,
242
(
2007
).
26.
Y.
Chen
,
S.
Zhang
,
X.
Yuan
,
Y.
Zhang
,
X.
Zhang
,
W.
Dai
, and
R.
Mori
,
Thermochim. Acta
441
,
42
(
2006
).
27.
L. A.
Blanchard
,
Z.
Gu
, and
J. F.
Brennecke
,
J. Phys. Chem. B
105
,
2437
(
2001
).
28.
T. C.
Lourenço
,
M. F. C.
Coelho
,
T. C.
Ramalho
,
D.
Van Der Spoel
, and
L. T.
Costa
,
Environ. Sci. Technol.
47
,
7421
(
2013
).
29.
S. M.
Mejía
,
M. J. L.
Mills
,
M. S.
Shaik
,
F.
Mondragon
, and
P. L. A.
Popelier
,
Phys. Chem. Chem. Phys.
13
,
7821
(
2011
).
30.
U.
Koch
and
P. L. A.
Popelier
,
J. Phys. Chem.
99
,
9747
(
1995
).
31.
M.
Brehm
and
B.
Kirchner
,
J. Chem. Inf. Model.
51
,
2007
(
2011
).
32.
O.
Hollóczki
,
Inorg. Chem.
53
,
835
(
2014
).
33.
X.
Wang
,
Y.
Chi
, and
T.
Mu
,
J. Mol. Liq.
193
,
262
(
2014
).
34.
F.
Dommert
,
J.
Schmidt
,
B.
Qiao
,
Y.
Zhao
,
C.
Krekeler
,
L.
Delle Site
,
R.
Berger
, and
C.
Holm
,
J. Chem. Phys.
129
,
224501
(
2008
).
35.
S.
Tsuzuki
,
H.
Tokuda
,
K.
Hayamizu
, and
M.
Watanabe
,
J. Phys. Chem. B
109
,
16474
(
2005
).
36.
T.
Köddermann
,
D.
Paschek
, and
R.
Ludwig
,
ChemPhysChem
8
,
2464
(
2007
).
37.
O.
Borodin
,
W.
Gorecki
,
G. D.
Smith
, and
M.
Armand
,
J. Phys. Chem. B
114
,
6786
(
2010
).
38.
C.
Schröder
and
O.
Steinhauser
,
J. Chem. Phys.
133
,
154511
(
2010
).
39.
O.
Borodin
,
J. Phys. Chem. B
113
,
11463
(
2009
).
40.
Y.
Zhang
and
E. J.
Maginn
,
J. Phys. Chem. B
116
,
10036
(
2012
).
41.
M.
Bühl
,
A.
Chaumont
,
R.
Schurhammer
, and
G.
Wipff
,
J. Phys. Chem. B
109
,
18591
(
2005
).
42.
L. T.
Costa
,
B.
Sun
,
F.
Jeschull
, and
D.
Brandell
,
J. Chem. Phys.
143
,
24904
(
2015
).
43.
E. D.
Hazelbaker
,
S.
Budhathoki
,
A.
Katihar
,
J. K.
Shah
,
E. J.
Maginn
, and
S.
Vasenkov
,
J. Phys. Chem. B
116
,
9141
(
2012
).
44.
M. S.
Kelkar
and
E. J.
Maginn
,
J. Phys. Chem. B
111
,
4867
(
2007
).
45.
J. S.
Hub
,
F. K.
Winkler
,
M.
Merrick
, and
B. L.
De Groot
,
J. Am. Chem. Soc.
132
,
13251
(
2010
).
46.
K. M.
Merz
, Jr.
,
J. Am. Chem. Soc.
113
,
406
(
1991
).
47.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
48.
R.
Ditchfield
,
J. Chem. Phys.
54
,
724
(
1971
).
49.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zhe
, and
D. J.
Fox
, gaussian, Revision D.01,
Gaussian, Inc.
,
2009
.
50.
L.
Martínez
,
R.
Andrade
,
E. G.
Birgin
, and
J. M.
Martínez
,
J. Comput. Chem.
30
,
2157
(
2009
).
51.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
52.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
53.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
14101
(
2007
).
54.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
55.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
,
J. Comput. Chem.
18
,
1463
(
1997
).
56.
S. G.
Kazarian
,
B. J.
Briscoe
, and
T.
Welton
,
Chem. Commun.
2000
,
2047
.
57.
H.
Weber
,
O.
Hollóczki
,
A. S.
Pensado
, and
B.
Kirchner
,
J. Chem. Phys.
139
,
84502
(
2013
).
58.
S. B. C.
Lehmann
,
M.
Roatsch
,
M.
Schöppke
, and
B.
Kirchner
,
Phys. Chem. Chem. Phys.
12
,
7473
(
2010
).
59.
I.
Skarmoutsos
,
D.
Dellis
,
R. P.
Matthews
,
T.
Welton
, and
P. A.
Hunt
,
J. Phys. Chem. B
116
,
4921
(
2012
).
60.
K.
Fujii
,
Y.
Soejima
,
Y.
Kyoshoin
,
S.
Fukuda
,
R.
Kanzaki
,
Y.
Umebayashi
,
T.
Yamaguchi
,
S.
Ishiguro
, and
T.
Takamuku
,
J. Phys. Chem. B
112
,
4329
(
2008
).
61.
M.
Kohagen
,
M.
Brehm
,
Y.
Lingscheid
,
R.
Giernoth
,
J.
Sangoro
,
F.
Kremer
,
S.
Naumov
,
C.
Iacob
,
J.
Kärger
,
R.
Valiullin
, and
B.
Kirchner
,
J. Phys. Chem. B
115
,
15280
(
2011
).
62.
S.
Tsuzuki
,
H.
Tokuda
, and
M.
Mikami
,
Phys. Chem. Chem. Phys.
9
,
4780
(
2007
).
63.
C.
Roth
,
S.
Chatzipapadopoulos
,
D.
Kerlé
,
F.
Friedriszik
,
M.
Lütgens
,
S.
Lochbrunner
,
O.
Kühn
, and
R.
Ludwig
,
New J. Phys.
14
,
105026
(
2012
).
64.
M.
Klähn
and
A.
Seduraman
,
J. Phys. Chem. B
119
,
10066
(
2015
).
65.
M. B.
Shiflett
and
A.
Yokozeki
,
Ind. Eng. Chem. Res.
44
,
4453
(
2005
).
66.
X.
Huang
,
C. J.
Margulis
,
Y.
Li
, and
B. J.
Berne
,
J. Am. Chem. Soc.
127
,
17842
(
2005
).
67.
M. S.
Shannon
,
J. M.
Tedstone
,
S. P. O.
Danielsen
,
M. S.
Hindman
,
A. C.
Irvin
, and
J. E.
Bara
,
Ind. Eng. Chem. Res.
51
,
5565
(
2012
).
68.
D. S.
Firaha
and
B.
Kirchner
,
J. Chem. Eng. Data
59
,
3098
(
2014
).
69.
B. L.
Bhargava
and
S.
Balasubramanian
,
J. Phys. Chem. B
111
,
4477
(
2007
).
70.
G. B.
Damas
,
A. B. A.
Dias
, and
L. T.
Costa
,
J. Phys. Chem. B
118
,
9046
(
2014
).
71.
D. S.
Firaha
,
O.
Hollóczki
, and
B.
Kirchner
,
Angew. Chem., Int. Ed.
54
,
7805
(
2015
).
72.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
San Diego
,
2002
).
73.
C.
Cadena
,
Q.
Zhao
,
R. Q.
Snurr
, and
E. J.
Maginn
,
J. Phys. Chem. B
110
,
2821
(
2006
).
74.
J.
Habasaki
and
K. L.
Ngai
,
J. Chem. Phys.
129
,
194501
(
2008
).
75.
E.
Androulaki
,
N.
Vergadou
, and
I. G.
Economou
,
Mol. Phys.
112
,
2694
(
2014
).
76.
S. M.
Urahata
and
M. C. C.
Ribeiro
,
J. Chem. Phys.
122
,
24511
(
2005
).
77.
L. J. A.
Siqueira
,
R. A.
Ando
,
F. F. C.
Bazito
,
R. M.
Torresi
,
P. S.
Santos
, and
M. C. C.
Ribeiro
,
J. Phys. Chem. B
112
,
6430
(
2008
).
78.
H.
Tokuda
,
K.
Ishii
,
M. A. B. H.
Susan
,
S.
Tsuzuki
,
K.
Hayamizu
, and
M.
Watanabe
,
J. Phys. Chem. B
110
,
2833
(
2006
).
79.
S. S.
Moganty
and
R. E.
Baltus
,
Ind. Eng. Chem. Res.
49
,
9370
(
2010
).
80.
R. C.
Remsing
,
G.
Hernandez
,
R. P.
Swatloski
,
W. W.
Massefski
,
R. D.
Rogers
, and
G.
Moyna
,
J. Phys. Chem. B
112
,
11071
(
2008
).
81.
M.
Vranes
,
S.
Dozic
,
V.
Djeric
, and
S.
Gadzuric
,
J. Chem. Eng. Data
57
1072
(
2012
).
82.
C.
Schröder
,
M.
Haberler
, and
O.
Steinhauser
,
J. Chem. Phys.
128
,
134501
(
2008
).
83.
H.
Tokuda
,
S.
Tsuzuki
,
M. A. B. H.
Susan
,
K.
Hayamizu
, and
M.
Watanabe
,
J. Phys. Chem. B
110
,
19593
(
2006
).
84.
S.
Tsuzuki
,
W.
Shinoda
,
H.
Saito
,
M.
Mikami
,
H.
Tokuda
, and
M.
Watanabe
,
J. Phys. Chem. B
113
,
10641
(
2009
).
85.
Y.
Zhang
and
E. J.
Maginn
,
J. Phys. Chem. Lett.
6
,
700
(
2015
).
86.
L. T.
Costa
and
M. C. C.
Ribeiro
,
J. Chem. Phys.
127
,
4
(
2007
).
87.
S. S.
Moganty
,
P. S.
Chinthamanipeta
,
V. K.
Vendra
,
S.
Krishnan
, and
R. E.
Baltus
,
Chem. Eng. J.
250
,
377
(
2014
).
88.
T. V.-O.
Nguyen
,
C.
Houriez
, and
B.
Rousseau
,
Phys. Chem. Chem. Phys.
12
,
930
(
2010
).
89.
B.
Qiao
,
C.
Krekeler
,
R.
Berger
,
L.
Delle Site
, and
C.
Holm
,
J. Phys. Chem. B
112
,
1743
(
2008
).
90.
G.
Laurenczy
and
P. J.
Dyson
,
Z. Naturforsch. B Chem. Sci.
63
,
681
(
2008
).

Supplementary Material

You do not currently have access to this content.