Symmetry plays an important role in the retention or annihilation of a desired interaction Hamiltonian in NMR experiments. Here, we explore the role of symmetry in the radio-frequency interaction frame Hamiltonian of the refocused-continuous-wave (rCW) pulse scheme that leads to efficient 1H heteronuclear decoupling in solid-state NMR. It is demonstrated that anti-periodic symmetry of single-spin operators (Ix, Iy, Iz) in the interaction frame can lead to complete annihilation of the 1H–1H homonuclear dipolar coupling effects that induce line broadening in solid-state NMR experiments. This symmetry also plays a critical role in cancelling or minimizing the effect of 1H chemical-shift anisotropy in the effective Hamiltonian. An analytical description based on Floquet theory is presented here along with experimental evidences to understand the decoupling efficiency of supercycled (concatenated) rCW scheme.

1.
M.
Ernst
, “
Heteronuclear spin decoupling in solid-state NMR under magic-angle sample spinning
, ”
J. Magn. Reson.
162
,
1
(
2003
).
2.
P.
Hodgkinson
, “
Heteronuclear decoupling in the NMR of solids
,”
Prog. Nucl. Magn. Reson. Spectrosc.
46
,
159
(
2005
).
3.
P. K.
Madhu
, “
Heteronuclear spin decoupling in solid-state nuclear magnetic resonance: Overview and outlook
,”
Isr. J. Chem.
54
,
25
(
2014
).
4.
A. L.
Bloom
and
J. N.
Shoolery
, “
Effects of perturbing radiofrequency fields on nuclear spin coupling
,”
Phys. Rev.
97
,
1261
(
1955
).
5.
P.
Tekely
,
P.
Palmas
, and
D.
Canet
, “
Effect of proton spin exchange on the residual 13C MAS NMR linewidths. Phase-modulated irradiation for efficient heteronuclear decoupling in rapidly rotating solids
,”
J. Magn. Reson., Ser. A
107
,
129
(
1994
).
6.
A. E.
Bennett
,
C. M.
Rienstra
,
M.
Auger
,
K. V.
Lakshmi
, and
R. G.
Griffin
, “
Heteronuclear decoupling in rotating solids
,”
J. Chem. Phys.
103
,
6951
(
1995
).
7.
Z. H.
Gan
and
R. R.
Ernst
, “
Frequency- and phase-modulated heteronuclear decoupling in rotating solids
,”
Solid State Nucl. Magn. Reson.
8
,
153
(
1997
).
8.
M.
Edén
and
M. H.
Levitt
, “
Pulse sequence symmetries in the nuclear magnetic resonance of spinning solids: Application to heteronuclear decoupling
,”
J. Chem. Phys.
111
,
1511
(
1999
).
9.
B. M.
Fung
,
A. K.
Khitrin
, and
K.
Ermolaev
, “
An improved broadband decoupling sequence for liquid crystals and solids
,”
J. Magn. Reson.
142
,
97
(
2000
).
10.
K.
Takegoshi
,
J.
Mizokami
, and
T.
Terao
, “
1H decoupling with third averaging in solid NMR
,”
Chem. Phys. Lett.
341
,
540
(
2001
).
11.
A.
Detken
,
E. H.
Hardy
,
M.
Ernst
, and
B. H.
Meier
, “
Simple and efficient decoupling in magic-angle spinning solid-state NMR
,”
Chem. Phys. Lett.
56
,
298
(
2002
).
12.
G. D.
Paëpe
,
D.
Sakellariou
,
P.
Hodgkinson
,
S.
Hediger
, and
L.
Emsley
, “
Heteronuclear decoupling in NMR of liquid crystals using continuous phase modulation
,”
Chem. Phys. Lett.
368
,
511
(
2003
).
13.
R. S.
Thakur
,
N. D.
Kurur
, and
P. K.
Madhu
, “
Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR
,”
Chem. Phys. Lett.
426
,
459
(
2006
).
14.
V. S.
Mithu
and
P. K.
Madhu
, “
Exploring connections between phase-modulated heteronuclear dipolar decoupling schemes in solid-state NMR
,”
Chem. Phys. Lett.
556
,
325
(
2013
).
15.
A.
Equbal
,
S.
Paul
,
V. S.
Mithu
,
P. K.
Madhu
, and
N. C.
Nielsen
, “
rTPPM: Towards improving solid-state NMR two-pulse phase-modulation heteronuclear dipolar decoupling sequence by refocusing
,”
J. Magn. Reson.
244
,
68
(
2014
).
16.
M.
Ernst
,
A.
Samoson
, and
B.
Meier
, “
Low-power decoupling in fast magic-angle spinning NMR
,”
Chem. Phys. Lett.
348
,
293
(
2001
).
17.
M.
Ernst
,
A.
Samoson
, and
B.
Meier
, “
Low-power XiX decoupling in NMR
,”
J. Magn. Reson.
163
,
332
339
(
2003
).
18.
V.
Agarwal
,
T.
Tuherm
,
A.
Reinhold
,
J.
Past
,
A.
Samoson
,
M.
Ernst
, and
B. H.
Meier
, “
Amplitude-modulated low-power decoupling sequences for fast magic-angle spinning NMR
,”
Chem. Phys. Lett.
583
,
1
(
2013
).
19.
V. S.
Mithu
,
S.
Paul
,
N. D.
Kurur
, and
P. K.
Madhu
, “
Heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance under ultra-high magic-angle spinning
,”
J. Magn. Reson.
209
,
359
(
2011
).
20.
M.
Weingarth
,
P.
Tekely
, and
G.
Bodenhausen
, “
Efficient heteronuclear decoupling by quenching rotary resonance in solid-state NMR
,”
Chem. Phys. Lett.
466
,
247
(
2008
).
21.
A.
Equbal
,
M.
Bjerring
,
P. K.
Madhu
, and
N. C.
Nielsen
, “
A unified heteronuclear decoupling strategy for magic-angle-spinning solid-state NMR spectroscopy
,”
J. Chem. Phys.
142
,
184201
(
2015
).
22.
J. M.
Vinther
,
A. B.
Nielsen
,
M.
Bjerring
,
E. R. H.
van Eck
,
A. P. M.
Kentgens
,
N.
Khaneja
, and
N. C.
Nielsen
, “
Refocused continuous-wave decoupling: A new approach to heteronuclear dipolar decoupling in solid-state NMR spectroscopy
,”
J. Chem. Phys.
137
,
214202
(
2012
).
23.
J. M.
Vinther
,
N.
Khaneja
, and
N. C.
Nielsen
, “
Robust and efficient 19F heteronuclear dipolar decoupling using refocused continuous-wave rf irradiation
,”
J. Magn. Reson.
226
,
88
(
2013
).
24.
A.
Equbal
,
S.
Paul
,
V. S.
Mithu
,
P. K.
Madhu
, and
N. C.
Nielsen
, “
Efficient heteronuclear decoupling in MAS solid-state NMR using non-rotor-synchronized rCW irradiation
,”
J. Magn. Reson.
246
,
104
(
2014
).
25.
G.
Guillaume
,
S.
Caldarelli
,
F.
Ziarelli
, and
S.
Gastaldi
, “
The influence of the molecular system on the performance of heteronuclear decoupling in solid-state NMR
,”
J. Magn. Reson.
210
,
75
81
(
2011
).
26.
A.
Equbal
,
M.
Leskes
,
N. C.
Nielsen
,
P. K.
Madhu
, and
S.
Vega
, “
Relative merits of rCWA and XiX heteronuclear spin decoupling in solid-state magic-angle-spinning NMR spectroscopy: A bimodal Floquet analysis
,”
J. Magn. Reson.
263
,
55
(
2016
).
27.
A.
Equbal
,
M.
Bjerring
,
P. K.
Madhu
, and
N. C.
Nielsen
, “
Improving spectral resolution in biological solid-state NMR using phase-alternated rCW heteronuclear decoupling
,”
Chem. Phys. Lett.
635
,
339
(
2015
).
28.
M. H.
Levitt
,
R.
Freeman
, and
T.
Frenkiel
, “
Broadband heteronuclear decoupling
,”
J. Magn. Reson.
47
,
328
330
(
1982
).
29.
J. S.
Waugh
, “
Systematic procedure for constructing broadband decoupling sequences
,”
J. Magn. Reson.
49
,
517
521
(
1982
).
30.
M. H.
Levitt
,
R.
Freeman
, and
T.
Frenkiel
, “
Broadband decoupling in high-resolution nuclear magnetic resonance spectroscopy
,”
Adv. Magn. Reson.
11
,
47
110
(
1983
).
31.
A.
Equbal
,
M.
Bjerring
,
K.
Sharma
,
P. K.
Madhu
, and
N. C.
Nielsen
, “
Heteronuclear decoupling in MAS NMR in the intermediate to fast sample spinning regime
,”
Chem. Phys. Lett.
644
,
243
(
2016
).
32.
M. H.
Levitt
, “
Symmetry-based pulse sequences in magic-angle spinning solid-state NMR
,” in
Encyclopedia of NMR
, edited by
D. M.
Grant
and
R. K.
Harris
(
John Wiley & Sons
,
Chichester
,
2002
).
33.
G.
Metz
,
X. L.
Wu
, and
S. O.
Smith
, “
Ramped-amplitude cross polarization in magic angle- spinning NMR
,”
J. Magn. Reson.
110
,
219
(
1994
).
34.
G. B.
Folland
,
Fourier Analysis and its Applications
(
Wadsworth and Brooks/Cole
,
1992
).
35.
J. H.
Shirley
, “
Solution of the Schrödinger equation with a Hamiltonian periodic in time
,”
Phys. Rev.
138
,
B979
(
1965
).
36.
G. J.
Boender
,
S.
Vega
, and
H. J. M.
De Groot
, “
A physical interpretation of the Floquet description of magic angle spinning nuclear magnetic resonance spectroscopy
,”
Mol. Phys.
95
,
921
(
1998
).
37.
M.
Ernst
,
A.
Samoson
, and
B. H.
Meier
, “
Decoupling and recoupling using continuous-wave irradiation in magic-angle-spinning solid-state NMR: A unified description using bimodal Floquet theory
,”
J. Phys. Chem.
123
,
064102
(
2005
).
38.
M.
Leskes
,
P. K.
Madhu
, and
S.
Vega
, “
Floquet theory in solid-state nuclear magnetic resonance
,”
Prog. Nucl. Magn. Reson. Spectrosc.
57
,
345
(
2010
).
39.
R.
Ramachandran
and
M. S.
Krishnan
, “
Effective Hamiltonians in Floquet theory of magic angle spinning using van Vleck transformation
,”
J. Chem. Phys.
114
,
5967
(
2001
).
40.
M. K.
Pandey
and
R.
Ramachandran
, “
Operator-based analytic theory of decoherence in NMR
,”
Mol. Phys.
109
,
1545
(
2010
).
41.
M. K.
Pandey
,
Z.
Qadri
, and
R.
Ramachandran
, “
Understanding cross-polarization (CP) NMR experiments through dipolar truncation
,”
J. Chem. Phys.
138
,
114108
(
2013
).
42.
M.
Ernst
,
H.
Geen
, and
B. H.
Meier
, “
Amplitude-modulated decoupling in rotating solids: A bimodal Floquet approach
,”
Solid State Nucl. Magn. Reson.
29
,
2
(
2006
).
43.
I.
Scholz
,
P.
Hodgkinson
,
B. H.
Meier
, and
M.
Ernst
, “
Understanding two-pulse phase-modulated decoupling in solid-state NMR
,”
J. Chem. Phys.
130
,
114510
(
2009
).
44.
M.
Leskes
,
R. S.
Thakur
,
P. K.
Madhu
,
N. D.
Kurur
, and
S.
Vega
, “
A Bimodal Floquet description of heteronuclear dipolar decoupling in solid state nuclear magnetic resonance
,”
J. Chem. Phys.
127
,
24501
(
2007
).

Supplementary Material

You do not currently have access to this content.