We develop a geometrical optimization technique for the projection-after-variation (PAV) scheme of the recently refined projected Hartree–Fock (PHF) as a fast alternative to the variation-after-projection (VAP) approach for optimizing the structures of molecules/clusters in symmetry-adapted electronic states at the mean-field computational cost. PHF handles the nondynamic correlation effects by restoring the symmetry of a broken-symmetry single reference wavefunction and moreover enables a black-box treatment of orbital selections. Using HF orbitals instead of PHF orbitals, our approach saves the computational cost for the orbital optimization, avoiding the convergence problem that sometimes emerges in the VAP scheme. We show that PAV-PHF provides geometries comparable to those of the complete active space self-consistent field and VAP-PHF for the tested systems, namely, CH2, O3, and the [Cu2O2]2+ core, where nondynamic correlation is abundant. The proposed approach is useful for large systems mainly dominated by nondynamic correlation to find stable structures in many symmetry-adapted states.

1.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
2.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
3.
D.
Hegarty
and
M. A.
Robb
,
Mol. Phys.
38
,
1795
(
1979
).
4.
B. O.
Roos
,
P.
Linse
,
P. E. M.
Siegbahn
, and
M. R. A.
Blomberg
,
Chem. Phys.
66
,
197
(
1982
).
5.
6.
G. K.-L.
Chan
and
M.
Head-Gordon
,
J. Chem. Phys.
116
,
4462
(
2002
).
7.
T.
Yanai
,
Y.
Kurashige
,
E.
Neuscamman
, and
G. K.-L.
Chan
,
J. Chem. Phys.
132
,
024105
(
2010
).
8.
S.
Sinnecker
,
F.
Neese
,
L.
Noodleman
, and
W.
Lubitz
,
J. Am. Chem. Soc.
126
,
2613
(
2004
).
9.
K.
Yamaguchi
,
S.
Yamanaka
,
M.
Nishino
,
Y.
Takano
,
Y.
Kitagawa
,
H.
Nagao
, and
Y.
Yoshioka
,
Theor. Chem. Acc.
102
,
328
(
1999
).
10.
P.-O.
Löwdin
,
Phys. Rev.
97
,
1474
(
1955
).
11.
A. T.
Amos
and
G. G.
Hall
,
Proc. R. Soc. A
263
,
483
(
1961
).
12.
S. J.
Andrews
,
D.
Jayatilaka
,
R. G. A.
Bone
,
N. C.
Handy
, and
R. D.
Amos
,
Chem. Phys. Lett.
183
,
423
(
1991
).
13.
N. C.
Handy
and
J. E.
Rice
, in
Proceedings of an International Workshop on Quantum Chemistry
, edited by
R.
Carbo
(
Elsevier
,
1989
), Vol. 2, p.
145
.
14.
15.
J.
Baker
,
J. Phys. Chem.
91
,
1789
(
1989
).
16.
Y. G.
Smeyers
and
L.
Doreste-Suarez
,
Int. J. Quantum Chem.
7
,
687
(
1973
).
17.
P. A.
Cox
and
M. H.
Wood
,
Theor. Chim. Acta.
41
,
269
(
1976
).
18.
K.
Yamaguchi
,
M.
Okumura
, and
W.
Mori
,
Chem. Phys. Lett.
210
,
201
(
1993
).
19.
C. A.
Jiménez-Hoyos
,
T. M.
Henderson
,
T.
Tsuchimochi
, and
G. E.
Scuseria
,
J. Chem. Phys.
136
,
164109
(
2012
).
20.
T.
Tsuchimochi
and
T.
Van Voorhis
,
J. Chem. Phys.
142
,
124103
(
2015
).
21.
T.
Tsuchimochi
and
T.
Van Voorhis
,
J. Chem. Phys.
141
,
164117
(
2014
).
22.
T.
Tsuchimochi
and
S.
Ten-no
,
J. Chem. Phys.
144
,
011101
(
2016
).
23.
T.
Tsuchimochi
and
S.
Ten-no
,
J. Chem. Theory Comput.
12
,
1741
(
2016
).
24.
R.
Schutski
,
C. A.
Jiménez-Hoyos
, and
G. E.
Scuseria
,
J. Chem. Phys.
140
,
204101
(
2014
).
25.
26.
N. C.
Handy
and
H. F.
Schaefer
,
J. Chem. Phys.
81
,
5031
(
1984
).
27.
F.
Furche
and
R.
Ahlrichs
,
J. Chem. Phys.
117
,
7433
(
2002
).
28.
A.
Gellan
,
Hierarchical Quantum Chemistry Program
(
Kobe University
,
2015
).
29.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
30.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
31.
A. K.
Wilson
,
T.
Mourik
, and
T. H.
Dunning
, Jr.
,
J. Mol. Struct.: THEOCHEM
388
,
339
(
1996
).
32.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
34.
C. D.
Sherrill
,
M. L.
Leininger
,
T. J.
van Huis
, and
H. F.
Schaefer
,
J. Chem. Phys.
108
,
1040
(
1998
).
35.
D. B.
Knowles
,
J. R.
Alvarez-Collado
,
G.
Hirsch
, and
R. J.
Buenker
,
J. Chem. Phys.
92
,
585
(
1990
).
36.
A. D.
McLean
,
P. R.
Bunker
,
R. M.
Escribano
, and
P.
Jensen
,
J. Chem. Phys.
87
,
2166
(
1987
).
37.
D. C.
Comeau
,
I.
Shavitt
,
P.
Jensen
, and
P. R.
Bunker
,
J. Chem. Phys.
90
,
6491
(
1989
).
38.
C. W.
Bauschlicher
,
S. R.
Langhoff
, and
P. R.
Taylor
,
J. Chem. Phys.
87
,
387
(
1987
).
39.
C. W.
Bauschlicher
and
P. R.
Taylor
,
J. Chem. Phys.
85
,
6510
(
1986
).
40.
A.
Balková
and
R. J.
Bartlett
,
J. Chem. Phys.
102
,
7116
(
1995
).
41.
P.
Piecuch
,
X.
Li
, and
J.
Paldus
,
Chem. Phys. Lett.
230
,
377
(
1994
).
42.
X.
Li
,
P.
Piecuch
, and
J.
Paldus
,
Chem. Phys. Lett.
224
,
267
(
1994
).
43.
J. D.
Watts
and
R. J.
Bartlett
,
J. Chem. Phys.
93
,
6104
(
1990
).
44.
P.
Jensen
and
P. R.
Bunker
,
J. Chem. Phys.
89
,
1327
(
1988
).
45.
O. R.
Wulf
,
Proc. Natl. Acad. Sci.
16
,
507
(
1930
).
46.
P. J.
Hay
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
67
,
2290
(
1977
).
47.
M. L.
Leininger
and
H. F.
Schaefer
,
J. Chem. Phys.
107
,
9059
(
1997
).
48.
T.
Tanaka
and
Y.
Morino
,
J. Mol. Spectrosc.
33
,
538
(
1970
).
49.
C. J.
Cramer
,
M.
Włoch
,
P.
Piecuch
,
C.
Puzzarini
, and
L.
Gagliardi
,
J. Phys. Chem. A
110
,
1991
(
2006
).
50.
P. Å.
Malmqvist
,
K.
Pierloot
,
A. R. M.
Shahi
,
C. J.
Cramer
, and
L.
Gagliardi
,
J. Chem. Phys.
128
,
204109
(
2008
).
51.
K.
Samanta
,
C. A.
Jiménez-Hoyos
, and
G. E.
Scuseria
,
J. Chem. Theory Comput.
8
,
4944
(
2012
).
52.
C. A.
Jiménez-Hoyos
,
R.
Rodríguez-Guzmán
, and
G. E.
Scuseria
,
J. Chem. Phys.
139
,
204102
(
2013
).
53.
B.
Jung
,
K. D.
Karlin
, and
A. D.
Zuberbühler
,
J. Am. Chem. Soc.
118
,
3763
(
1996
).
54.
V.
Mahadevan
,
M. J.
Henson
,
E. I.
Solomon
, and
T. D. P.
Stack
,
J. Am. Chem. Soc.
122
,
10249
(
2000
).
55.
L. M.
Mirica
,
X.
Ottenwaelder
, and
T. D. P.
Stack
,
Chem. Rev.
104
,
1013
(
2004
).
56.
L. Q.
Hatcher
and
K. D.
Karlin
,
Advanced Inorganic Chemistry
(
Academic Press
,
2006
), pp.
131
184
.
57.
Z.
Huang
and
S.
Kais
,
Chem. Phys. Lett.
413
,
1
(
2005
).
You do not currently have access to this content.