In this paper, we present new ideas for computing rovibrational energy levels of molecules composed of two components and apply them to H2O–Cl. When both components are themselves molecules, Euler angles that specify their orientation with respect to an axis system attached to the inter-monomer vector are used as vibrational coordinates. For H2O–Cl, there is only one set of Euler angles. Using Euler angles as intermolecular vibrational coordinates is advantageous because in many cases coupling between them and coordinates that describe the shape of the monomers is unimportant. The monomers are not assumed to be rigid. In the most efficient calculation, vibrational wavefunctions of the monomers are used as contracted basis functions. Energy levels are calculated using the Lanczos algorithm.

1.
B. L.
Blaney
and
G. E.
Ewing
,
Annu. Rev. Phys. Chem.
27
,
553
(
1976
).
2.
D. J.
Nesbitt
,
Chem. Rev.
88
,
843
(
1988
).
3.
A.
van der Avoird
,
P. E. S.
Wormer
, and
R.
Moszynski
,
Chem. Rev.
94
,
1931
(
1994
).
4.
P. E. S.
Wormer
and
A.
van Dev Avoird
,
Chem. Rev.
100
,
4109
(
2000
).
5.
G.
Brocks
and
T.
Huygen
,
J. Chem. Phys.
85
,
3411
(
1986
).
6.
J.
Hutson
,
J. Chem. Phys.
92
,
157
(
1990
).
7.
C.
Leforestier
,
J. Chem. Phys.
101
,
7357
(
1994
).
8.
J. W. I.
van Bladel
,
A.
van der Avoird
, and
P. E. S.
Wormer
,
J. Chem. Phys.
94
,
501
(
1991
).
9.
J. W. I.
van Bladel
,
A.
van der Avoird
, and
P. E. S.
Wormer
,
J. Phys. Chem.
95
,
5414
(
1991
).
10.
T. G. A.
Heijmen
,
P. E. S.
Wormer
,
A.
van der Avoird
,
R. E.
Miller
, and
R.
Moszynski
,
J. Chem. Phys.
110
,
5639
(
1999
).
11.
E. H. T.
Olthof
,
A.
van der Avoird
, and
P. E. S.
Wormer
,
J. Chem. Phys.
101
,
8430
(
1994
).
12.
E. H. T.
Olthof
,
A.
van der Avoird
,
P. E. S.
Wormer
,
J. G.
Loeser
, and
R. J.
Saykally
,
J. Chem. Phys.
101
,
8443
(
1994
).
13.
C.
Leforestier
,
L. B.
Braly
,
K.
Liu
,
M. J.
Elroy
, and
R. J.
Saykally
,
J. Chem. Phys.
106
,
8527
(
1997
).
14.
G. C.
Groenenboom
,
P. E. S.
Wormer
,
A.
van der Avoird
,
E. M.
Mas
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Chem. Phys.
113
,
6702
(
2000
).
15.
M. J.
Smit
,
G. C.
Groenenboom
,
P. E. S.
Wormer
,
A.
van der Avoird
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Phys. Chem.
105
,
6212
(
2001
).
16.
S. C.
Althorpe
and
D. C.
Clary
,
J. Chem. Phys.
101
,
3603
(
1994
).
17.
H.
Chen
,
S.
Liu
, and
J. C.
Light
,
J. Chem. Phys.
110
,
168
(
1999
).
18.
Y.-B.
Duan
,
R.
Wang
, and
I.
Mukhopadhyay
,
Chem. Phys.
280
,
119
(
2002
).
19.
R. E. A.
Kelly
,
J.
Tennyson
,
G. C.
Groenenboom
, and
A.
van der Avoird
,
J. Quant. Spectrosc. Radiat. Transfer
111
,
1262
(
2010
).
20.
J.
Tennyson
,
M. J.
Barber
, and
R. E. A.
Kelly
,
Philos. Trans. R. Soc., A
370
,
2656
(
2012
).
21.
A.
van der Avoird
,
R.
Podeszwa
,
K.
Szalewicz
,
C.
Leforestier
,
R.
van Harrevelt
,
P. R.
Bunker
,
M.
Schnell
,
G.
von Helden
, and
G.
Meijer
,
Phys. Chem. Chem. Phys.
12
,
8219
(
2010
).
22.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
113
,
044313
(
2000
).
23.
A.
van der Avoird
and
D. J.
Nesbitt
,
J. Chem. Phys.
134
,
044314
(
2011
).
24.
X.-G.
Wang
,
T.
Carrington
, Jr.
,
J.
Tang
, and
A. R. W.
McKellar
,
J. Chem. Phys.
123
,
034301
(
2005
).
25.
H.
Li
,
P.-N.
Roy
, and
R.
Le Roy
,
J. Chem. Phys.
132
,
214309
(
2010
).
26.
R.
Dawes
,
X.-G.
Wang
,
A. W.
Jasper
, and
T.
Carrington
, Jr.
,
J. Chem. Phys.
133
,
144306
(
2010
).
27.
X.-G.
Wang
,
T.
Carrington
, Jr.
,
R.
Dawes
, and
A. W.
Jasper
,
J. Mol. Spectrosc.
268
,
53
(
2011
).
28.
X.
Chapuisat
and
C.
Iung
,
Phys. Rev. A
45
,
6217
(
1992
).
29.
F.
Gatti
and
C.
Iung
,
Phys. Rep.
484
,
1
(
2009
).
30.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
121
,
2937
(
2004
).
31.
J. C.
Light
and
T.
Carrington
, Jr.
,
Adv. Chem. Phys.
114
,
263
(
2000
).
32.
R. N.
Zare
,
Angular Momentum
(
Wiley
,
New York
,
1988
).
33.
C.
Iung
and
C.
Leforestier
,
J. Chem. Phys.
90
,
3198
(
1989
).
34.
M. J.
Bramley
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
99
,
8519
(
1993
).
35.
M. J.
Bramley
and
T.
Carrington
,
J. Chem. Phys.
101
,
8494
(
1994
).
36.
R. B.
Lehoucq
,
S. K.
Gray
,
D.-H.
Zhang
, and
J. C.
Light
,
Comput. Phys. Commun.
109
,
15
(
1998
).
37.
V. A.
Mandelshtam
and
H. S.
Taylor
,
J. Chem. Phys.
102
,
7390
(
1995
).
38.
H.-G.
Yu
and
S. C.
Smith
,
Ber. Bunsenges. Phys. Chem.
101
,
400
(
1997
).
39.
R.
Chen
and
H.
Guo
,
J. Chem. Phys.
108
,
6068
(
1998
).
40.
G.
Avila
and
T.
Carrington
,
J. Chem. Phys.
134
,
054126-1
054126-16
(
2011
).
41.
J.
Brown
,
X.-G.
Wang
,
R.
Dawes
, and
T.
Carrington
,
J. Chem. Phys.
136
,
134306-1
134306-12
(
2012
).
42.
G.
Brocks
,
A.
Van Der Avoird
,
B. T.
Sutcliffe
, and
J.
Tennyson
,
Mol. Phys.
50
,
1025
(
1983
).
43.
F.
Gatti
,
C.
Iung
,
C.
Leforestier
, and
X.
Chapuisat
,
J. Chem. Phys.
111
,
7236
(
1999
).
44.
C.
Leforestier
,
F.
Gatti
,
R. S.
Fellers
, and
R. J.
Saykally
,
J. Chem. Phys.
117
,
8710
(
2002
).
45.
C.
Leforestier
,
K.
Szalewicz
, and
A.
van der Avoird
,
J. Chem. Phys.
137
,
014305
(
2012
).
46.
F.
Gatti
,
J. Chem. Phys.
111
,
7225
(
1999
).
47.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
113
,
7097
(
2000
).
48.
Z.
Zhao
,
J.
Chen
,
Z.
Zhang
,
D. H.
Zhang
,
D.
Lauvergnat
, and
F.
Gatti
,
J. Chem. Phys.
144
,
204302
(
2016
).
49.
T.
Carrington
and
X.-G.
Wang
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
1
,
952
(
2011
).
50.
51.
F. T.
Smith
,
Phys. Rev. Lett.
45
,
1157
(
1980
).
52.
S.
Carter
,
N. C.
Handy
, and
B. T.
Sutcliffe
,
Mol. Phys.
49
,
745
(
1983
).
53.
H.
Wei
and
T.
Carrington
,
J. Chem. Phys.
101
,
1343
(
1994
).
54.
P.
Sarkar
,
N.
Poulin
, and
T.
Carrington
, Jr.
,
J. Chem. Phys.
110
,
10269
(
1999
).
55.
B. T.
Sutcliffe
and
J.
Tennyson
,
Int. J. Quantum Chem.
39
,
183
(
1991
).
56.
B. T.
Sutcliffe
and
J.
Tennyson
,
Int. J. Quantum Chem.
42
,
941
(
1992
).
57.
X.-G.
Wang
and
T.
Carrington
,
Mol. Phys.
110
,
825
(
2012
).
58.
H.
Wei
and
T.
Carrington
, Jr.
,
Chem. Phys. Lett.
287
,
289
(
1998
).
59.
H.
Wei
and
T.
Carrington
,
J. Chem. Phys.
107
,
2813
2818
(
1997
).
60.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
138
,
104106
(
2013
).
61.
P. R.
Bunker
and
P.
Jensen
,
Molecular Symmetry and Spectroscopy
(
NRC Research Press
,
Ottawa
,
1998
).
62.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
118
,
6946
(
2003
).
63.
U.
Manthe
and
H.
Koeppel
,
J. Chem. Phys.
93
,
345
(
1990
).
64.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
123
,
154303
(
2005
).
65.
D. H.
Zhang
,
Q.
Wu
,
J. Z. H.
Zhang
,
M.
von Dirke
, and
Z.
Bacic
,
J. Chem. Phys.
102
,
2315
(
1995
).
66.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
119
,
101
(
2003
).
67.
C.
Fábri
,
E.
Mátyus
,
T.
Furtenbacher
,
L.
Nemes
,
B.
Mihály
,
T.
Zoltáni
, and
A. G.
Császár
,
J. Chem. Phys.
135
,
094307
(
2011
).
68.
M.
Rey
,
A. V.
Nikitin
, and
V. G.
Tyuterev
,
J. Chem. Phys.
136
,
244106
(
2012
).
69.
R.
Wodraszka
and
U.
Manthe
,
J. Phys. Chem. A
117
,
7246
7255
(
2013
).
70.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
140
,
204306
(
2014
).
71.
J.
Rheinecker
and
J. M.
Bowman
,
J. Chem. Phys.
124
,
131102
(
2006
).
72.
J.
Rheinecker
and
J. M.
Bowman
,
J. Chem. Phys.
125
,
133206
(
2006
).
73.
H.
Wei
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
97
,
3029
(
1992
).
74.
J.
Echave
and
D. C.
Clary
,
Chem. Phys. Lett.
190
,
225
(
1992
).
75.
M. J.
Bramley
,
J. W.
Tromp
,
T.
Carrington
, and
G. C.
Corey
,
J. Chem. Phys.
100
,
6175
6194
(
1994
).
76.
X.-G.
Wang
and
T.
Carrington
,
J. Chem. Phys.
117
,
6923
(
2002
).
77.
X.-G.
Wang
and
T.
Carrington
,
Mol. Phys.
111
,
2320
(
2013
).

Supplementary Material

You do not currently have access to this content.