Both top-down and bottom-up localization schemes are proposed for constructing localized molecular orbitals (LMOs) of open-shell systems, via least change from fragments to molecule. The success of both schemes stems from (1) the primitive fragment LMOs that are local not only in space but also in energy and (2) the “conquer step” that allows arbitrary assignment of the unpaired electrons to fragments. Moreover, integral occupations are retained, so as to facilitate subsequent treatment of electron correlation and excitation.

1.
W.
Wu
,
P. S.
Su
,
S.
Shaik
, and
P. C.
Hiberty
,
Chem. Rev.
111
,
7557
(
2011
).
2.
J.
Lennard-Jones
and
J. A.
Pople
,
Proc. R. Soc. London, Ser. A
202
,
166
(
1950
).
3.
G. G.
Hall
,
Proc. R. Soc. London, Ser. A
202
,
336
(
1950
).
4.
S.
Saebo
and
P.
Pulay
,
Annu. Rev. Phys. Chem.
44
,
213
(
1993
).
5.
S. F.
Boys
,
Rev. Mod. Phys.
32
,
296
(
1960
).
6.
J. M.
Foster
and
S. F.
Boys
,
Rev. Mod. Phys.
32
,
300
(
1960
).
7.
S. F.
Boys
, in
Quantum Theory of Atoms, Molecules, and the Solid State
, edited by
P.-O.
Löwdin
(
Academic Press
,
New York
,
1966
), p.
253
.
8.
C.
Edmiston
and
K.
Ruedenberg
,
Rev. Mod. Phys.
35
,
457
(
1963
).
9.
C.
Edmiston
and
K.
Ruedenberg
,
J. Chem. Phys.
43
,
S97
(
1965
).
10.
C.
Edmiston
and
K.
Ruedenberg
, in
Quantum Theory of Atoms, Molecules, and the Solid State
, edited by
P.-O.
Löwdin
(
Academic Press
,
New York
,
1966
), p.
263
.
11.
W.
Von Niessen
,
J. Chem. Phys.
56
,
4290
(
1972
).
12.
J.
Pipek
and
P. G.
Mezey
,
J. Chem. Phys.
90
,
4916
(
1989
).
13.
S.
Lehtola
and
H.
Jónsson
,
J. Chem. Theory Comput.
10
,
642
(
2014
).
14.
V.
Magnasco
and
A.
Perico
,
J. Chem. Phys.
47
,
971
(
1967
).
15.
D. A.
Kleier
,
T. A.
Halgren
,
J. H.
Hall
, Jr.
, and
W. N.
Lipscomb
,
J. Chem. Phys.
61
,
3905
(
1974
).
16.
C.
Angeli
,
G.
Del Re
, and
M.
Persico
,
Chem. Phys. Lett.
233
,
102
(
1995
).
17.
F.
Aquilante
,
T. B.
Pedersen
,
A. S.
de Merás
, and
H.
Koch
,
J. Chem. Phys.
125
,
174101
(
2006
).
18.
T.
Zoboko
and
I.
Mayer
,
J. Comput. Chem.
32
,
689
(
2011
).
19.
A. E.
Reed
and
F.
Weinhold
,
J. Chem. Phys.
83
,
1736
(
1985
).
20.
F. L.
Gu
,
Y.
Aoki
,
J.
Korchowiec
,
A.
Imamura
, and
B.
Kirtman
,
J. Chem. Phys.
121
,
10385
(
2004
).
21.
P.
de Silva
,
M.
Giebułtowski
, and
J.
Korchowiec
,
Phys. Chem. Chem. Phys.
14
,
546
(
2012
).
22.
J. E.
Subotnik
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
123
,
114108
(
2005
).
23.
M.
Ziółkowski
,
B.
Jansík
,
P.
Jørgensen
, and
J.
Olsen
,
J. Chem. Phys.
131
,
124112
(
2009
).
24.
B.
Jansík
,
S.
Høst
,
K.
Kristensen
, and
P.
Jørgensen
,
J. Chem. Phys.
134
,
194104
(
2011
).
25.
I.-M.
Høyvik
,
B.
Jansík
, and
P.
Jørgensen
,
J. Chem. Phys.
137
,
224114
(
2012
).
26.
F.
Wu
,
W.
Liu
,
Y.
Zhang
, and
Z.
Li
,
J. Chem. Theory Comput.
7
,
3643
(
2011
).
27.
J.
Rubio
,
A.
Povill
,
J. P.
Malrieu
, and
P.
Reinhardt
,
J. Chem. Phys.
107
,
10044
(
1997
).
28.
D.
Maynau
,
S.
Evangelisti
,
N.
Guihéry
,
C. J.
Calzado
, and
J.-P.
Malrieu
,
J. Chem. Phys.
116
,
10060
(
2002
).
29.
W. H.
Adams
,
J. Chem. Phys.
34
,
89
(
1961
).
30.
T. L.
Gilbert
, in
Molecular Orbitals in Chemistry, Physics, and Biology
, edited by
P.-O.
Löwdin
and
B.
Pullman
(
Academic
,
New York
,
1964
), pp.
405
420
.
31.
L.
Seijo
and
Z.
Barandiarán
,
J. Chem. Phys.
121
,
6698
(
2004
).
32.
L. E.
Ratcliff
,
N. D. M.
Hine
, and
P. D.
Haynes
,
Phys. Rev. B
84
,
165131
(
2011
).
33.
T. J.
Zuehlsdorff
,
N. D. M.
Hine
,
J. S.
Spencer
,
N. M.
Harrison
, and
P. D.
Haynes
,
J. Chem. Phys.
139
,
064104
(
2013
).
34.
A. F.
Sax
,
J. Comput. Chem.
33
,
1495
(
2012
).
35.
C.
Zhang
and
S.
Li
,
J. Chem. Phys.
141
,
244106
(
2014
).
36.
J. E.
Subotnik
,
Y.
Shao
,
W.
Liang
, and
M.
Head-Gordon
,
J. Chem. Phys.
121
,
9220
(
2004
).
37.
I.-M.
Høyvik
,
B.
Jansik
, and
P.
Jørgensen
,
J. Chem. Theory Comput.
8
,
3137
(
2012
).
38.
S.
Lehtola
and
H.
Jónsson
,
J. Chem. Theory Comput.
9
,
5365
(
2013
).
39.
Y.
Guo
,
W.
Li
, and
S.
Li
,
J. Chem. Phys.
135
,
134107
(
2011
).
40.
G.
Knizia
,
J. Chem. Theory Comput.
9
,
4834
(
2013
).
41.
W. C.
Lu
,
C. Z.
Wang
,
M. W.
Schmidt
,
L.
Bytautas
,
K. M.
Ho
, and
K.
Ruedenberg
,
J. Chem. Phys.
120
,
2629
(
2004
).
42.
A. C.
West
,
M. W.
Schmidt
,
M. S.
Gordon
, and
K.
Ruedenberg
,
J. Chem. Phys.
139
,
234107
(
2013
).
43.
Z.
Li
,
H.
Li
,
B.
Suo
, and
W.
Liu
,
Acc. Chem. Res.
47
,
2758
(
2014
).
44.
I.-M.
Høyvik
,
K.
Kristensen
,
T.
Kjægaard
, and
P.
Jørgensen
,
Theor. Chem. Acc.
133
,
1417
(
2014
).
45.
I.-M.
Høyvik
and
P.
Jørgensen
,
Chem. Rev.
116
,
3306
(
2016
).
46.
J.
Ciupka
,
M.
Hanrath
, and
M.
Dolg
,
J. Chem. Phys.
135
,
244101
(
2011
).
47.
N.
Marzari
and
D.
Vanderbilt
,
Phys. Rev. B
56
,
12847
(
1997
).
48.
H. J.
Xiang
,
Z.
Li
,
W.
Liang
,
J.
Yang
,
J. G.
Hou
, and
Q.
Zhu
,
J. Chem. Phys.
124
,
234108
(
2006
).
49.
N.
Marzari
,
A. A.
Mostofi
,
J. R.
Yates
,
I.
Souza
, and
D.
Vanderbilt
,
Rev. Mod. Phys.
84
,
1419
(
2012
).
50.
S.
Liu
,
J. M.
Perez-Jorda
, and
W.
Yang
,
J. Chem. Phys.
112
,
1634
(
2000
).
51.
H.
Feng
,
J.
Bian
,
L.
Li
, and
W.
Yang
,
J. Chem. Phys.
120
,
9458
(
2004
).
52.
L.
Peng
,
F.
Gu
, and
W.
Yang
,
Phys. Chem. Chem. Phys.
15
,
15518
(
2013
).
53.
H.
Stoll
,
G.
Wagenblast
, and
H.
Preuß
,
Theor. Chim. Acta
57
,
169
(
1980
).
54.
J. M.
Cullen
,
Int. J. Quantum Chem.
25
,
193
(
1991
).
55.
E.
Gianinetti
,
M.
Raimondi
, and
E.
Tornaghi
,
Int. J. Quantum Chem.
60
,
157
(
1996
).
56.
T.
Nagata
,
O.
Takhashi
,
K.
Saito
, and
S.
Iwata
,
J. Chem. Phys.
115
,
3553
(
2001
).
57.
R. Z.
Khaliullin
,
M.
Head-Gordon
, and
A. T.
Bell
,
J. Chem. Phys.
124
,
204105
(
2006
).
58.
Y.
Mo
and
S. D.
Peyerimhoff
,
J. Chem. Phys.
109
,
1687
(
1998
).
59.
Y.
Mo
,
J.
Gao
, and
S. D.
Peyerimhoff
,
J. Chem. Phys.
112
,
5530
(
2000
).
60.
S. R.
Pruitt
,
D. G.
Fedorov
,
K.
Kitaura
, and
M. S.
Gordon
,
J. Chem. Theory Comput.
6
,
1
(
2010
).
61.
S. R.
Pruitt
,
D. G.
Fedorov
, and
M. S.
Gordon
,
J. Phys. Chem. A
116
,
4965
(
2012
).
62.
J.
Korchowiec
,
F. L.
Gu
, and
Y.
Aoki
,
Int. J. Quantum Chem.
105
,
875
(
2005
).
63.
Y.
Orimoto
,
F. L.
Gu
,
J.
Korchowiec
,
A.
Imamura
, and
Y.
Aoki
,
Theor. Chem. Acc.
125
,
493
(
2010
).
64.
M.
Kobayashi
,
T.
Yoshikawa
, and
H.
Nakai
,
Chem. Phys. Lett.
500
,
172C177
(
2010
).
65.
M.
Kobayashi
and
H.
Nakai
,
Phys. Chem. Chem. Phys.
14
,
7629
(
2012
).
67.
W.
Yang
and
T. S.
Lee
,
J. Chem. Phys.
103
,
5674
(
1995
).
68.
L.
Cederbaum
,
J.
Schirmer
, and
H.-D.
Meyer
,
J. Phys. A: Math. Gen.
22
,
2427
(
1989
).
69.
W.
Liu
and
D.
Peng
,
J. Chem. Phys.
131
,
031104
(
2009
).
71.
C.
Huang
,
W.
Liu
,
Y.
Xiao
, and
M. R.
Hoffmann
(unpublished).
72.
W.
Kutzelnigg
and
W.
Liu
,
J. Chem. Phys.
123
,
241102
(
2005
).
73.
W.
Liu
and
D.
Peng
,
J. Chem. Phys.
125
,
044102
(
2006
).
74.
D.
Peng
,
W.
Liu
,
Y.
Xiao
, and
L.
Cheng
,
J. Chem. Phys.
127
,
104106
(
2007
).
75.
W.
Liu
and
W.
Kutzelnigg
,
J. Chem. Phys.
126
,
114107
(
2007
).
77.
W.
Liu
,
Natl. Sci. Rev.
3
,
204
(
2016
).
78.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
79.
W.
Liu
,
G.
Hong
,
D.
Dai
,
L.
Li
, and
M.
Dolg
,
Theor. Chem. Acc.
96
,
75
(
1997
).
80.
W.
Liu
,
F.
Wang
, and
L.
Li
,
J. Theor. Comput. Chem.
2
,
257
(
2003
).
81.
W.
Liu
,
F.
Wang
, and
L.
Li
, in
Recent Advances in Computational Chemistry
, edited by
K.
Hirao
and
Y.
Ishikawa
(
World Scientific
,
Singapore
,
2004
), Vol. 5, p.
257
.
82.
S. I.
Levchenkov
,
I. N.
Shcherbakov
,
L. D.
Popov
,
A. I.
Uraev
,
K. Y.
Suponitskii
,
A. A.
Zubenko
,
A. M.
Ionov
, and
V. A.
Kogan
,
J. Struct. Chem.
56
,
113
(
2015
).
83.
Z.
Li
and
W.
Liu
,
J. Chem. Phys.
137
,
154114
(
2012
).
84.
Z.
Li
,
Y.
Xia
, and
W.
Liu
,
J. Chem. Phys.
141
,
054111
(
2012
).
85.
P. K.
Tamukong
,
M. R.
Hoffmann
,
Z.
Li
, and
W.
Liu
,
J. Phys. Chem. A
118
,
1489
(
2014
).
86.
Z.
Li
and
W.
Liu
,
J. Chem. Phys.
133
,
064106
(
2010
).
87.
Z.
Li
,
W.
Liu
,
Y.
Zhang
, and
B.
Suo
,
J. Chem. Phys.
134
,
134101
(
2011
).
88.
Z.
Li
and
W.
Liu
,
J. Chem. Phys.
135
,
194106
(
2011
).
89.
J.
Liu
,
Y.
Zhang
, and
W.
Liu
,
J. Chem. Theory Comput.
10
,
2436
(
2014
).
90.
J. A. R.
Coope
and
D. W.
Sabo
,
J. Comput. Phys.
23
,
404
(
1977
).

Supplementary Material

You do not currently have access to this content.