The calculation of the energy gap between the magnetic states of organic poly-radicals still represents a challenging playground for quantum chemistry, and high-level techniques are required to obtain accurate estimates. On these grounds, the aim of the present study is twofold. From the one side, it shows that, thanks to recent algorithmic and technical improvements, we are able to compute reliable quantum mechanical results for the systems of current fundamental and technological interest. From the other side, proper parameterization of a simple Hubbard Hamiltonian allows for a sound rationalization of magnetic gaps in terms of basic physical effects, unraveling the role played by electron delocalization, Coulomb repulsion, and effective exchange in tuning the magnetic character of the ground state. As case studies, we have chosen three prototypical organic tri-radicals, namely, 1,3,5-trimethylenebenzene, 1,3,5-tridehydrobenzene, and 1,2,3-tridehydrobenzene, which differ either for geometric or electronic structure. After discussing the differences among the three species and their consequences on the magnetic properties in terms of the simple model mentioned above, accurate and reliable values for the energy gap between the lowest quartet and doublet states are computed by means of the so-called difference dedicated configuration interaction (DDCI) technique, and the final results are discussed and compared to both available experimental and computational estimates.

1.
O.
Kahn
,
Molecular Magnetism
(
VCH
,
New York
,
1993
).
3.
J. M. D.
Coey
,
J. Magn. Magn. Mater.
226
,
2107
(
2001
).
4.
E.
Coronado
,
P.
Delhaès
,
D.
Gatteschi
, and
J. S.
Milles
,
Molecular Magnetism: From Molecular Assemblies to the Devices
(
Kluwer Academic Publishers
,
Dordrecht
,
1996
).
5.
D.
Gatteschi
,
R.
Sessoli
, and
J.
Villain
,
Molecular Nanomagnets
(
Oxford University Press
,
New York
,
2006
).
6.
S.
Goswami
,
A. K.
Mondal
, and
S.
Konar
,
Inorg. Chem. Front.
2
,
687
(
2015
).
7.
S. T.
Liddle
and
J.
van Slageren
,
Chem. Soc. Rev.
44
,
6655
(
2015
).
8.
Z.
Zeng
,
X.
Shi
,
C.
Chi
,
J. T. L.
Navarrete
,
J.
Casado
, and
J.
Wu
,
Chem. Soc. Rev.
44
,
6578
(
2015
).
9.
S. N.
Datta
,
C. O.
Trindle
, and
F.
Illas
,
Theoretical and Computational Aspects of Magnetic Organic Molecules
(
World Scientific Publishing Co. Pte. Ltd.
,
Singapore
,
2014
).
10.
S.
Sanvito
,
Chem. Soc. Rev.
40
,
3336
(
2011
).
11.
J. M.
Clemente-Juan
,
E.
Coronado
, and
A.
Gaita-Arino
,
Chem. Soc. Rev.
41
,
7464
(
2012
).
12.
H.
Gu
,
X.
Zhang
,
H.
Wei
,
Y.
Huang
,
S.
Wei
, and
Z.
Guo
,
Chem. Soc. Rev.
42
,
5907
(
2013
).
13.
H.
Atsufumi
and
T.
Koki
,
J. Phys. D: Appl. Phys.
47
,
193001
(
2014
).
14.
E. V.
Gomonay
and
V. M.
Loktev
,
Low Temp. Phys.
40
,
17
(
2014
).
15.
A.
Kazuya
,
Semicond. Sci. Technol.
29
,
043002
(
2014
).
16.
S. Y.
Quek
and
K. H.
Khoo
,
Acc. Chem. Res.
47
,
3250
(
2014
).
17.
R.
Naaman
and
D. H.
Waldeck
,
Annu. Rev. Phys. Chem.
66
,
263
(
2015
).
18.
A.
Yasuo
,
Jpn. J. Appl. Phys.
54
,
070101
(
2015
).
19.
S.
Shil
,
D.
Bhattacharya
,
A.
Misra
, and
D. J.
Klein
,
Phys. Chem. Chem. Phys.
17
,
23378
(
2015
).
20.
I. P. R.
Moreira
,
C.
de Graaf
,
V.
Barone
, and
F.
Illas
,
Theor. Chem. Acc.
104
,
265
(
2000
).
21.
A. I.
Krylov
,
J. Phys. Chem. A
109
,
10638
(
2005
).
22.
B. D.
Koivisto
and
R. G.
Hicks
,
Coord. Chem. Rev.
249
,
2612
(
2005
).
23.
T.
Itoh
,
K.
Hirai
, and
H.
Tomioka
,
Bull. Chem. Soc. Jpn.
80
,
138
(
2007
).
24.
J.
Lee
,
E.
Lee
,
S.
Kim
,
G. S.
Bang
,
D. A.
Shultz
,
R. D.
Schmidt
,
M. D. E.
Forbes
, and
H.
Lee
,
Angew. Chem., Int. Ed.
50
,
4414
(
2011
).
25.
W. C.
Lineberger
and
T. W.
Weston
,
Phys. Chem. Chem. Phys.
13
,
11792
(
2011
).
26.
S. V.
Chapyshev
,
Russ. Chem. Bull.
60
,
1274
(
2012
).
28.
M.
Winkler
and
W.
Sander
,
Acc. Chem. Res.
47
,
31
(
2014
).
29.
J. P.
Malrieu
,
R.
Caballol
,
C. J.
Calzado
,
C.
de Graaf
, and
N.
Guihéry
,
Chem. Rev.
114
,
429
(
2014
).
30.
G.
Gryn’ova
,
M. L.
Coote
, and
C.
Corminboeuf
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
440
(
2015
).
31.
N. M.
Gallagher
,
A.
Olankitwanit
, and
A.
Rajca
,
J. Org. Chem.
80
,
1291
(
2015
).
32.
Y.
Tsuji
,
R.
Hoffmann
,
M.
Strange
, and
G. C.
Solomon
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
E413
(
2016
).
33.
A. K.
Pal
,
S.
Hansda
, and
S. N.
Datta
,
J. Phys. Chem. A
119
,
2176
(
2015
).
34.
C.
Felser
,
G. H.
Fecher
, and
B.
Balke
,
Angew. Chem., Int. Ed.
46
,
668
(
2007
).
35.
T.
Jahnert
,
M. D.
Hager
, and
U. S.
Schubert
,
J. Mater. Chem. A
2
,
15234
(
2014
).
36.
P.
Neuhaus
and
W.
Sander
,
Angew. Chem., Int. Ed.
49
,
7277
(
2010
).
37.
A.
Rajca
,
A.
Olankitwanit
,
Y.
Wang
,
P. J.
Boratyński
,
M.
Pink
, and
S.
Rajca
,
J. Am. Chem. Soc.
135
,
18205
(
2013
).
38.
E.
Coulaud
,
D.
Hagebaum-Reignier
,
D.
Siri
,
P.
Tordo
, and
N.
Ferre
,
Phys. Chem. Chem. Phys.
14
,
5504
(
2012
).
39.
J. P.
Malrieu
and
G.
Trinquier
,
J. Phys. Chem. A
116
,
8226
(
2012
).
40.
M. E.
Ali
,
V.
Staemmler
,
F.
Illas
, and
P. M.
Oppeneer
,
J. Chem. Theory Comput.
9
,
5216
(
2013
).
41.
Y.
Liu
,
F. A.
Villamena
,
A.
Rockenbauer
,
Y.
Song
, and
J. L.
Zweier
,
J. Am. Chem. Soc.
135
,
2350
(
2013
).
42.
A. K.
Pal
,
D. R.
Mañeru
,
I. A.
Latif
,
I. de P. R.
Moreira
,
F.
Illas
, and
S. N.
Datta
,
Theor. Chem. Acc.
133
,
1472
(
2014
).
43.
A.
Olankitwanit
,
M.
Pink
,
S.
Rajca
, and
A.
Rajca
,
J. Am. Chem. Soc.
136
,
14277
(
2014
).
44.
X.
Zhu
and
Y.
Aoki
,
J. Comput. Chem.
36
,
1232
(
2015
).
45.
V.
Barone
,
C.
Boilleau
,
I.
Cacelli
,
A.
Ferretti
,
S.
Monti
, and
G.
Prampolini
,
J. Chem. Theory Comput.
9
,
300
(
2013
).
46.
V.
Barone
,
C.
Boilleau
,
I.
Cacelli
,
A.
Ferretti
, and
G.
Prampolini
,
J. Chem. Theory Comput.
9
,
1958
(
2013
).
47.
I.
Cacelli
,
A.
Ferretti
,
G.
Prampolini
, and
V.
Barone
,
J. Chem. Theory Comput.
11
,
2024
(
2015
).
48.
A. I.
Krylov
, “
The quantum chemistry of open-shell species
,”
Rev. Comput. Chem.
(in press).
49.
C. J.
Cramer
and
D. G.
Truhlar
,
Phys. Chem. Chem. Phys.
11
,
10757
(
2009
).
50.
A.
Bencini
and
F.
Totti
,
J. Chem. Theory Comput.
5
,
144
(
2009
).
51.
F.
Neese
,
Coord. Chem. Rev.
253
,
526
(
2009
).
52.
A.
Caneschi
,
D.
Gatteschi
, and
F.
Totti
,
Coord. Chem. Rev.
289–290
,
357
(
2015
).
53.
Y.
Shao
and
M.
Head-Gordon
,
J. Chem. Phys.
118
,
4807
(
2003
).
54.
F.
Wang
and
T.
Ziegler
,
J. Chem. Phys.
121
,
12191
(
2004
).
55.
Z.
Rinkevicius
,
O.
Vahtras
, and
H.
Ågren
,
J. Chem. Phys.
133
,
114104
(
2010
).
56.
Y. A.
Bernard
,
Y.
Shao
, and
A. I.
Krylov
,
J. Chem. Phys.
136
,
204103
(
2012
).
57.
C.
Angeli
and
C. J.
Calzado
,
J. Chem. Phys.
137
,
034104
(
2012
).
58.
C. J.
Calzado
,
C.
Angeli
,
C.
de Graaf
, and
R.
Caballol
,
Theor. Chem. Acc.
128
,
505
(
2011
).
59.
S.
Chattopadhyay
,
U. S.
Mahapatra
, and
R. K.
Chaudhuri
,
Chem. Phys.
401
,
15
(
2012
).
60.
A. I.
Krylov
,
Chem. Phys. Lett.
338
,
375
(
2001
).
61.
D.
Casanova
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
14
,
9779
(
2009
).
62.
N. J.
Mayhall
and
M.
Head-Gordon
,
J. Chem. Theory Comput.
10
,
589
(
2014
).
63.
N. J.
Mayhall
and
M.
Head-Gordon
,
J. Phys. Chem. Lett.
6
,
1982
(
2015
).
64.
A. I.
Krylov
,
Acc. Chem. Res.
39
,
83
(
2006
).
65.
J.
Miralles
,
O.
Castell
,
R.
Caballol
, and
J.-P.
Malrieu
,
Chem. Phys.
172
,
33
(
1993
).
66.
J.
Miralles
,
J. P.
Daudey
, and
R.
Caballol
,
Chem. Phys. Lett.
198
,
555
(
1992
).
67.
N.
Suaud
,
R.
Ruamps
,
N.
Guihéry
, and
J.-P.
Malrieu
,
J. Chem. Theory Comput.
8
,
4127
(
2012
).
68.
V.
Barone
,
I.
Cacelli
,
A.
Ferretti
, and
M.
Girlanda
,
J. Chem. Phys.
128
,
174303
(
2008
).
69.
V.
Barone
,
I.
Cacelli
,
A.
Ferretti
, and
G.
Prampolini
,
Phys. Chem. Chem. Phys.
11
,
3854
(
2009
).
70.
V.
Barone
,
I.
Cacelli
,
A.
Ferretti
,
S.
Monti
, and
G.
Prampolini
,
J. Chem. Theory Comput.
7
,
699
(
2011
).
71.
V.
Barone
,
I.
Cacelli
,
A.
Ferretti
,
S.
Monti
, and
G.
Prampolini
,
Phys. Chem. Chem. Phys.
13
,
4709
(
2011
).
72.
J.
Veciana
,
C.
Rovira
,
N.
Ventosa
,
M. I.
Crespo
, and
F.
Palacio
,
J. Am. Chem. Soc.
115
,
57
(
1993
).
73.
C. R.
Kemnitz
,
R. R.
Squires
, and
W. T.
Borden
,
J. Am. Chem. Soc.
119
,
6564
(
1997
).
74.
H. M. T.
Nguyen
,
A.
Dutta
,
K.
Morokuma
, and
M. T.
Nguyen
,
J. Chem. Phys.
122
,
154308
(
2005
).
75.
T.
Höltzl
,
T.
Veszprémi
, and
M. T.
Nguyen
,
Chem. Phys. Lett.
499
,
26
(
2010
).
76.
H. A.
Lardin
,
J. J.
Nash
, and
P. G.
Wenthold
,
J. Am. Chem. Soc.
124
,
12612
(
2002
).
77.
L. V.
Slipchenko
and
A. I.
Krylov
,
J. Chem. Phys.
118
,
9614
(
2003
).
78.
S.
Venkataramani
,
M.
Winkler
, and
W.
Sander
,
Angew. Chem., Int. Ed.
44
,
6306
(
2005
).
79.
A.-M. C.
Cristian
,
Y.
Shao
, and
A. I.
Krylov
,
J. Phys. Chem. A
108
,
6581
(
2004
).
80.
L.
Koziol
,
M.
Winkler
,
K. N.
Houk
,
S.
Venkataramani
,
W.
Sander
, and
A. I.
Krylov
,
J. Phys. Chem. A
111
,
5071
(
2007
).
81.
S.
Chattopadhyay
,
R. K.
Chaudhuri
, and
K. F.
Freed
,
J. Phys. Chem. A
115
,
3665
(
2011
).
82.
M. J.
Frisch
 et al., gaussian 09, Revision d01,
Gaussian, Inc.
,
Pittsburgh, PA
,
2009
.
83.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boats
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S. J.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
(
1993
).
84.
C. J.
Calzado
,
J.
Cabrero
,
J.-P.
Malrieu
, and
R.
Caballol
,
J. Chem. Phys.
116
,
2728
(
2002
).

Supplementary Material

You do not currently have access to this content.