Non-equilibrium molecular dynamics simulations have been performed to study the molecular mechanism of flow-induced crystallization (FIC) of polyethylene (PE). The end-to-end distance of chain Rete and the content of trans conformation Ctrans are extracted out to represent intra-chain conformation ordering at whole chain and segment levels, respectively, while orientation correlation function P, density ρ, and bond orientational order parameter Q4 are taken to depict inter-chain orders. Imposing the extension induces the intra-chain conformational ordering to occur first, which further couples with the inter-chain order and results in the formation of hexagonal packing. Further increasing strain leads to the appearance of orthorhombic order. The results demonstrate that the FIC of PE proceeds via a multi-stage ordering process, during which coupling occurs among stress, intra-chain conformation, and inter-chain orientation and density orderings. Analyzing the flow-induced energy evolution unveils that not only entropy but also energy plays an important role in the FIC.

1.
Z.
Bashir
,
J. A.
Odell
, and
A.
Keller
,
J. Mater. Sci.
19
,
3713
(
1984
).
2.
M.
Gahleitner
,
J.
Wolfschwenger
,
C.
Bachner
,
K.
Bernreitner
, and
W.
Neibl
,
J. Appl. Polym. Sci.
61
,
649
(
1996
).
3.
S.
Kimata
,
T.
Sakurai
,
Y.
Nozue
,
T.
Kasahara
,
N.
Yamaguchi
,
T.
Karino
,
M.
Shibayama
, and
J. A.
Kornfield
,
Science
316
,
1014
(
2007
).
4.
P. J.
Flory
,
J. Chem. Phys.
15
,
397
(
1947
).
5.
S.
Coppola
,
N.
Grizzuti
, and
P. L.
Maffettone
,
Macromolecules
34
,
5030
(
2001
).
6.
Y.
Cong
,
H.
Liu
,
D.
Wang
,
B.
Zhao
,
T.
Yan
,
L.
Li
,
W.
Chen
,
Z.
Zhong
,
M.-C.
Lin
, and
H.-L.
Chen
,
Macromolecules
44
,
5878
(
2011
).
7.
J. A.
Kornfield
,
G.
Kumaraswamy
, and
A. M.
Issaian
,
Ind. Eng. Chem. Res.
41
,
6383
(
2002
).
8.
H.
Janeschitz-Kriegl
,
E.
Ratajski
, and
M.
Stadlbauer
,
Rheol. Acta
42
,
355
(
2003
).
9.
R. S.
Graham
and
P. D.
Olmsted
,
Faraday Discuss.
144
,
71
(
2010
).
10.
D.
Liu
,
N.
Tian
,
N.
Huang
,
K.
Cui
,
Z.
Wang
,
T.
Hu
,
H.
Yang
,
X.
Li
, and
L.
Li
,
Macromolecules
47
,
6813
(
2014
).
11.
D.
Wang
,
C.
Shao
,
B.
Zhao
,
L.
Bai
,
X.
Wang
,
T.
Yan
,
J.
Li
,
G.
Pan
, and
L.
Li
,
Macromolecules
43
,
2406
(
2010
).
12.
Y.
Liu
,
K.
Cui
,
N.
Tian
,
W.
Zhou
,
L.
Meng
,
L.
Li
,
Z.
Ma
, and
X.
Wang
,
Macromolecules
45
,
2764
(
2012
).
13.
R. H.
Somani
,
B. S.
Hsiao
,
A.
Nogales
,
H.
Fruitwala
,
S.
Srinivas
, and
A. H.
Tsou
,
Macromolecules
34
,
5902
(
2001
).
14.
T.
Kanaya
,
G.
Matsuba
,
Y.
Ogino
,
K.
Nishida
,
H. M.
Shimizu
,
T.
Shinohara
,
T.
Oku
,
J.
Suzuki
, and
T.
Otomo
,
Macromolecules
40
,
3650
(
2007
).
15.
B. S.
Hsiao
,
L.
Yang
,
R. H.
Somani
,
C. A.
Avila-Orta
, and
L.
Zhu
,
Phys. Rev. Lett.
94
,
117802
(
2005
).
16.
B.
Shen
,
Y.
Liang
,
J. A.
Kornfield
, and
C. C.
Han
,
Macromolecules
46
,
1528
(
2013
).
17.
P. C.
Roozemond
,
Z.
Ma
,
K.
Cui
,
L.
Li
, and
G. W.
Peters
,
Macromolecules
47
,
5152
(
2014
).
18.
Z.
Ma
,
L.
Balzano
,
T.
van Erp
,
G.
Portale
, and
G. W.
Peters
,
Macromolecules
46
,
9249
(
2013
).
19.
A.
Keller
and
H. W. H.
Kolnaar
, in
Processing of Polymers
, edited by
H. E. H.
Meijer
(
VCH
,
New York
,
1997
), p.
189
.
20.
P. J.
Flory
,
J. Chem. Phys.
15
,
684
(
1947
).
21.
D.
Turnbull
and
J. C.
Fisher
,
J. Chem. Phys.
17
,
71
(
1949
).
22.
N.
Tian
,
W.
Zhou
,
K.
Cui
,
Y.
Liu
,
Y.
Fang
,
X.
Wang
,
L.
Liu
, and
L.
Li
,
Macromolecules
44
,
7704
(
2011
).
23.
K.
Cui
,
D.
Liu
,
Y.
Ji
,
N.
Huang
,
Z.
Ma
,
Z.
Wang
,
F.
Lv
,
H.
Yang
, and
L.
Li
,
Macromolecules
48
,
694
(
2015
).
24.
D.
Liu
,
K.
Cui
,
N.
Huang
,
Z.
Wang
, and
L.
Li
,
Sci. China: Chem.
58
,
1570
(
2015
).
25.
Z.
Ma
,
L.
Balzano
, and
G. W. M.
Peters
,
Macromolecules
49
,
2724
(
2016
).
26.
Z.
Wang
,
J.
Ju
,
J.
Yang
,
Z.
Ma
,
D.
Liu
,
K.
Cui
,
H.
Yang
,
J.
Chang
,
N.
Huang
, and
L.
Li
,
Sci. Rep.
6
,
32968
(
2016
).
27.
P. D.
Olmsted
,
W. C.
Poon
,
T.
McLeish
,
N.
Terrill
, and
A.
Ryan
,
Phys. Rev. Lett.
81
,
373
(
1998
).
28.
C.
Luo
and
J.-U.
Sommer
,
Macromolecules
44
,
1523
(
2011
).
29.
C.
Luo
and
J.-U.
Sommer
,
ACS Macro Lett.
5
,
30
(
2016
).
30.
T.
Yamamoto
,
Macromolecules
47
,
3192
(
2014
).
31.
A.
Koyama
,
T.
Yamamoto
,
K.
Fukao
, and
Y.
Miyamoto
,
Phys. Rev. E
65
,
050801
(
2002
).
32.
M.
Kröger
and
S.
Hess
,
Phys. Rev. Lett.
85
,
1128
(
2000
).
33.
M.
Kröger
,
W.
Loose
, and
S.
Hess
,
J. Rheol.
37
,
1057
(
1993
).
34.
R. S.
Graham
and
P. D.
Olmsted
,
Phys. Rev. Lett.
103
,
115702
(
2009
).
35.
J.
Rottler
,
S.
Barsky
, and
M. O.
Robbins
,
Phys. Rev. Lett.
89
,
148304
(
2002
).
36.
D.
Hossain
,
M. A.
Tschopp
,
D. K.
Ward
,
J. L.
Bouvard
,
P.
Wang
, and
M. F.
Horstemeyer
,
Polymer
51
,
6071
(
2010
).
37.
L.
Huang
,
X.
Yang
,
X.
Jia
, and
D.
Cao
,
Phys. Chem. Chem. Phys.
16
,
24892
(
2014
).
38.
S.
Lee
and
G. C.
Rutledge
,
Macromolecules
44
,
3096
(
2011
).
39.
M. S.
Lavine
,
N.
Waheed
, and
G. C.
Rutledge
,
Polymer
44
,
1771
(
2003
).
40.
Z.
Wang
,
Z.
Ma
, and
L.
Li
,
Macromolecules
49
,
1505
(
2016
).
41.
I. S. D.
, Accelrys Materials Studio 6.1,
Accelrys Software
,
2012
.
42.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
43.
S. B.
Smith
,
L.
Finzi
, and
C.
Bustamante
,
Science
258
,
1122
(
1992
).
44.
M. N.
Tamashiro
and
P.
Pincus
,
Phys. Rev. E
63
,
021909
(
2001
).
45.
H.
An
,
B.
Zhao
,
Z.
Ma
,
C.
Shao
,
X.
Wang
,
Y.
Fang
,
L.
Li
, and
Z.
Li
,
Macromolecules
40
,
4740
(
2007
).
46.
L.
Li
and
W.
de Jeu
,
Adv. Polym. Sci.
181
,
75
(
2005
).
47.
Z.
Ma
,
L.
Balzano
,
G.
Portale
, and
G. W.
Peters
,
Polymer
55
,
6140
(
2014
).
48.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
49.
U.
Gasser
,
A.
Schofield
, and
D. A.
Weitz
,
J. Phys.: Condens. Matter
15
,
S375
(
2003
).
50.
Y.
Hayashi
,
G.
Matsuba
,
Y.
Zhao
,
K.
Nishida
, and
T.
Kanaya
,
Polymer
50
,
2095
(
2009
).
51.
G.
Kumaraswamy
,
A. M.
Issaian
, and
J. A.
Kornfield
,
Macromolecules
32
,
7537
(
1999
).
52.
F.
Tanaka
,
Macromolecules
33
,
4249
(
2000
).

Supplementary Material

You do not currently have access to this content.