We augment ab initio molecular dynamics simulations with a quantitative account of phononic dissipation to study the non-equilibrium aftermath of the exothermic oxygen dissociation at low-index (111), (100), and (110) Pd surfaces. Comparing the hyperthermal diffusion arising from a non-instantaneous dissipation of the released chemical energy, we find a striking difference in the resulting “hot” adatom lifetime that is not overall reflected in experimentally recorded product end distances. We rationalize this finding through a detailed mode-specific phonon analysis and identify the dominant dissipation channels as qualitatively different groups of localized surface modes that ultimately lead to intrinsically different rates of dissipation to the Pd bulk. The thus obtained first-principles perspective on non-equilibrium adsorbate-phonon dynamics thereby underscores the sensitive dependence on details of the phononic fine structure, while questioning prevalent assumptions about energy sinks made in commonly used model bath Hamiltonians.

1.
J.
Barth
,
Surf. Sci. Rep.
40
,
75
(
2000
).
2.
L. C.
Ciacchi
and
M. C.
Payne
,
Phys. Rev. Lett.
92
,
176104
(
2004
).
3.
A.
Carley
,
P.
Davies
, and
M.
Roberts
,
Catal. Lett.
80
,
25
(
2002
).
4.
H.
Brune
,
J.
Wintterlin
,
R. J.
Behm
, and
G.
Ertl
,
Phys. Rev. Lett.
68
,
624
(
1992
).
5.
S.
Schintke
,
S.
Messerli
,
K.
Morgenstern
,
J.
Nieminen
, and
W.-D.
Schneider
,
J. Chem. Phys.
114
,
4206
(
2001
).
6.
M.-F.
Hsieh
,
D.-S.
Lin
,
H.
Gawronski
, and
K.
Morgenstern
,
J. Chem. Phys.
131
,
174709
(
2009
).
7.
C.
Sprodowski
,
M.
Mehlhorn
, and
K.
Morgenstern
,
J. Phys.: Condens. Matter
22
,
264005
(
2010
).
8.
M.
Rose
,
A.
Borg
,
J.
Dunphy
,
T.
Mitsui
,
D.
Ogletree
, and
M.
Salmeron
,
Surf. Sci.
561
,
69
(
2004
).
9.
J.
Wintterlin
,
R.
Schuster
, and
G.
Ertl
,
Phys. Rev. Lett.
77
,
123
(
1996
).
10.
M.
Schmid
,
G.
Leonardelli
,
R.
Tschelienig
,
A.
Biedermann
, and
P.
Varga
,
Surf. Sci.
478
,
L355
(
2001
);
A. J.
Komrowski
,
J. Z.
Sexton
,
A. C.
Kummel
,
M.
Binetti
,
O.
Weiße
, and
E.
Hasselbrink
,
Phys. Rev. Lett.
87
,
246103
(
2001
).
[PubMed]
11.
S. A.
Adelman
and
J. D.
Doll
,
J. Chem. Phys.
64
,
2375
(
1976
).
12.
J. C.
Tully
,
J. Chem. Phys.
73
,
6333
(
1980
).
13.
J. C.
Polanyi
and
R. J.
Wolf
,
J. Chem. Phys.
82
,
1555
(
1985
).
14.
M. D.
Stiles
and
J. W.
Wilkins
,
Phys. Rev. Lett.
54
,
595
(
1985
).
15.
J.
Meyer
and
K.
Reuter
,
Angew. Chem., Int. Ed.
53
,
4721
(
2014
).
16.
V. J.
Bukas
and
K.
Reuter
,
Phys. Rev. Lett.
117
,
146101
(
2016
).
17.
H.
Lin
and
D.
Truhlar
,
Theor. Chem. Acc.
117
,
185
(
2007
).
18.
C.
Bo
and
F.
Maseras
,
Dalton Trans.
2008
,
2911
.
19.
N.
Bernstein
,
J. R.
Kermode
, and
G.
Csányi
,
Rep. Prog. Phys.
72
,
026501
(
2009
).
20.
M. M.
Siddick
,
G. J.
Ackland
, and
C. A.
Morrison
,
J. Chem. Phys.
125
,
064707
(
2006
).
21.
N.
de Koker
,
Phys. Rev. Lett.
103
,
125902
(
2009
).
22.
N.
de Koker
,
Earth Planet. Sci. Lett.
292
,
392
(
2010
).
23.
A. J. H.
McGaughey
and
M.
Kaviany
,
Phys. Rev. B
69
,
094303
(
2004
).
24.
J.
Meyer
, “
Ab initio modeling of energy dissipation during chemical reactions at transition metal surfaces
,” Ph.D. thesis,
Freie Universität Berlin
,
Germany
,
2012
.
25.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
);
[PubMed]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
26.
S. S.
Alexandre
,
E.
Anglada
,
J. M.
Soler
, and
F.
Yndurain
,
Phys. Rev. B
74
,
054405
(
2006
);
D. A.
Stewart
,
New J. Phys.
10
,
043025
(
2008
).
27.
C.
Carbogno
,
A.
Gross
,
J.
Meyer
, and
K.
Reuter
, in
Dynamics of Gas-Surface Interactions
, Springer Series in Surface Sciences, Vol. 50, edited by
R. D.
Muiño
and
H. F.
Busnengo
(
Springer
,
2013
), pp.
389
419
.
28.
V.
Blum
,
R.
Gehrke
,
F.
Hanke
,
P.
Havu
,
V.
Havu
,
X.
Ren
,
K.
Reuter
, and
M.
Scheffler
,
Comput. Phys. Commun.
180
,
2175
(
2009
).
29.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
30.
S.
Plimpton
,
J. Chem. Phys.
117
,
1
(
1995
).
31.
M. I.
Baskes
,
Phys. Rev. B
46
,
2727
(
1992
).
32.
R.
Heid
and
K.-P.
Bohnen
,
Phys. Rep.
387
,
151
(
2003
).
33.
S. R.
Bahn
and
K. W.
Jacobsen
,
Comput. Sci. Eng.
4
,
56
(
2002
).
34.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jnsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
35.
A.
den Dunnen
,
S.
Wiegman
,
L.
Jacobse
, and
L. B. F.
Juurlink
,
J. Chem. Phys.
142
,
214708
(
2015
).
36.
P.
Junell
,
K.
Honkala
,
M.
Hirsimki
,
M.
Valden
, and
K.
Laasonen
,
Surf. Sci.
546
,
L797
(
2003
).
37.
P.
Sjövall
and
P.
Uvdal
,
Chem. Phys. Lett.
282
,
355
(
1998
).
38.
P.
Nolan
,
B.
Lutz
,
P.
Tanaka
, and
C.
Mullins
,
Surf. Sci.
419
,
L107
(
1998
).
39.
V. J.
Bukas
,
S.
Mitra
,
J.
Meyer
, and
K.
Reuter
,
J. Chem. Phys.
143
,
034705
(
2015
).
40.
V. J.
Bukas
,
J.
Meyer
,
M.
Alducin
, and
K.
Reuter
,
Z. Phys. Chem.
227
,
1523
(
2013
).
41.
V. J.
Bukas
and
K.
Reuter
, “
A comparative study of atomic oxygen adsorption at Pd surfaces from Density Functional Theory
“ (unpublished).
42.
A.
Eichler
,
F.
Mittendorfer
, and
J.
Hafner
,
Phys. Rev. B
62
,
4744
(
2000
).
43.
K.
Honkala
and
K.
Laasonen
,
J. Chem. Phys.
115
,
2297
(
2001
).
44.
K. W.
Kolasinski
,
F.
Cemic
, and
E.
Hasselbrink
,
Chem. Phys. Lett.
219
,
113
(
1994
).
45.

We ensure the equilibrium end-distance is not limited by unphysical O–O interactions through lateral periodic images of the embedding cell by pausing the QM/Me trajectory at a point for which dOO=3 SLCs, i.e., where substrate mediated adsorbate interactions are expected to have largely vanished.55 We thereby continue integration based on two (3 × 3) QM embedding cells centered around each oxygen atom and treated independently on the DFT level (yet still coupled via the substrate motion described on the MEAM level). Having the cells dynamically “follow” the motion of the individual oxygen atoms over the surface reproduces the original trajectory, thus conveying further trust in both the embedding approach and the resulting maximum adatom separation distance.

46.
I.
Sklyadneva
,
G.
Rusina
, and
E.
Chulkov
,
Surf. Sci.
377
,
313
(
1997
).
47.
M. D.
Stiles
,
J. W.
Wilkins
, and
M.
Persson
,
Phys. Rev. B
34
,
4490
(
1986
);
B.
Jackson
,
Comput. Phys. Commun.
63
,
154
(
1991
);
B.
Jackson
,
Comput. Phys. Commun.
80
,
119
(
1994
);
B.
Jackson
,
J. Chem. Phys.
108
,
1131
(
1998
).
48.
S.-I.
Tamura
,
Phys. Rev. B
30
,
610
(
1984
).
49.
M.
Hand
and
J.
Harris
,
J. Chem. Phys.
92
,
7610
(
1990
).
50.
G.-J.
Kroes
,
Science
321
,
794
(
2008
).
51.
H. F.
Busnengo
,
W.
Dong
,
P.
Sautet
, and
A.
Salin
,
Phys. Rev. Lett.
87
,
127601
(
2001
);
[PubMed]
H. F.
Busnengo
,
W.
Dong
, and
A.
Salin
,
Phys. Rev. Lett.
93
,
236103
(
2004
);
[PubMed]
H. F.
Busnengo
,
M. A.
Di Césare
,
W.
Dong
, and
A.
Salin
,
Phys. Rev. B
72
,
125411
(
2005
).
52.
C.
Engdahl
and
G.
Wahnström
,
Surf. Sci.
312
,
429
(
1994
);
G.
Wahnström
,
A. B.
Lee
, and
J.
Strömquist
,
J. Chem. Phys.
105
,
326
(
1996
).
53.
D. J.
Auerbach
,
Phys. Scr.
1983
,
122
.
54.
A. S.
Sanz
and
S.
Miret-Artés
,
Phys. Rep.
451
,
37
(
2007
).
55.
Y.
Zhang
,
V.
Blum
, and
K.
Reuter
,
Phys. Rev. B
75
,
235406
(
2007
).
You do not currently have access to this content.