Fragmentation methods such as the many-body expansion (MBE) are a common strategy to model large systems by partitioning energies into a hierarchy of decreasingly significant contributions. The number of calculations required for chemical accuracy is still prohibitively expensive for the ab initio MBE to compete with force field approximations for applications beyond single-point energies. Alongside the MBE, empirical models of ab initio potential energy surfaces have improved, especially non-linear models based on neural networks (NNs) which can reproduce ab initio potential energy surfaces rapidly and accurately. Although they are fast, NNs suffer from their own curse of dimensionality; they must be trained on a representative sample of chemical space. In this paper we examine the synergy of the MBE and NN’s and explore their complementarity. The MBE offers a systematic way to treat systems of arbitrary size while reducing the scaling problem of large systems. NN’s reduce, by a factor in excess of 106, the computational overhead of the MBE and reproduce the accuracy of ab initio calculations without specialized force fields. We show that for a small molecule extended system like methanol, accuracy can be achieved with drastically different chemical embeddings. To assess this we test a new chemical embedding which can be inverted to predict molecules with desired properties. We also provide our open-source code for the neural network many-body expansion, Tensormol.

1.
K.
Raghavachari
and
A.
Saha
, “
Accurate composite and fragment-based quantum chemical models for large molecules
,”
Chem. Rev.
115
,
5643
5677
(
2015
).
2.
N. J.
Mayhall
and
K.
Raghavachari
, “
Many-overlapping-body (mob) expansion: A generalized many body expansion for nondisjoint monomers in molecular fragmentation calculations of covalent molecules
,”
J. Chem. Theory Comput.
8
,
2669
2675
(
2012
).
3.
R. M.
Richard
and
J. M.
Herbert
, “
A generalized many-body expansion and a unified view of fragment-based methods in electronic structure theory
,”
J. Chem. Phys.
137
,
064113
(
2012
).
4.
J.
Liu
and
J. M.
Herbert
, “
Pair-pair approximation to the generalized many-body expansion: An alternative to the four-body expansion for ab initio prediction of protein energetics via molecular fragmentation
,”
J. Chem. Theory Comput.
12
,
572
(
2016
).
5.
S.
Wen
,
K.
Nanda
,
Y.
Huang
, and
G. J.
Beran
, “
Practical quantum mechanics-based fragment methods for predicting molecular crystal properties
,”
Phys. Chem. Chem. Phys.
14
,
7578
7590
(
2012
).
6.
G. J.
Beran
, “
Approximating quantum many-body intermolecular interactions in molecular clusters using classical polarizable force fields
,”
J. Chem. Phys.
130
,
164115
(
2009
).
7.
A.
Saha
and
K.
Raghavachari
, “
Dimers of dimers (dod): A new fragment-based method applied to large water clusters
,”
J. Chem. Theory Comput.
10
,
58
67
(
2013
).
8.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
, “
Fragmentation methods: A route to accurate calculations on large systems
,”
Chem. Rev.
112
,
632
672
(
2012
).
9.
E. E.
Dahlke
and
D. G.
Truhlar
, “
Electrostatically embedded many-body expansion for large systems, with applications to water clusters
,”
J. Chem. Theory Comput.
3
,
46
53
(
2007
).
10.
G. R.
Medders
,
V.
Babin
, and
F.
Paesani
, “
A critical assessment of two-body and three-body interactions in water
,”
J. Chem. Theory Comput.
9
,
1103
1114
(
2013
).
11.
O. A.
von Lilienfeld
and
A.
Tkatchenko
, “
Two-and three-body interatomic dispersion energy contributions to binding in molecules and solids
,”
J. Chem. Phys.
132
,
234109
(
2010
).
12.
K. J.
Jose
,
D.
Beckett
, and
K.
Raghavachari
, “
Vibrational circular dichroism spectra for large molecules through molecules-in-molecules fragment-based approach
,”
J. Chem. Theory Comput.
11
,
4238
4247
(
2015
).
13.
J.
Behler
and
M.
Parrinello
, “
Generalized neural-network representation of high-dimensional potential-energy surfaces
,”
Phys. Rev. Lett.
98
,
146401
(
2007
).
14.
J.
Behler
, “
Neural network potential-energy surfaces in chemistry: A tool for large-scale simulations
,”
Phys. Chem. Chem. Phys.
13
,
17930
17955
(
2011
).
15.
B.
Jiang
and
H.
Guo
, “
Permutation invariant polynomial neural network approach to fitting potential energy surfaces
,”
J. Chem. Phys.
139
,
054112
(
2013
).
16.
C. M.
Handley
and
P. L.
Popelier
, “
Potential energy surfaces fitted by artificial neural networks
,”
J. Phys. Chem. A
114
,
3371
3383
(
2010
).
17.
J.
Cuny
,
Y.
Xie
,
C. J.
Pickard
, and
A. A.
Hassanali
, “
Ab initio quality nmr parameters in solid-state materials using a high-dimensional neural-network representation
,”
J. Chem. Theory Comput.
12
,
765
773
(
2016
).
18.
Z.
Zhang
and
D. H.
Zhang
, “
Effects of reagent rotational excitation on the H + CHD3 H2+ CD3 reaction: A seven dimensional time-dependent wave packet study
,”
J. Chem. Phys.
141
,
144309
(
2014
).
19.
W.
Koch
and
D. H.
Zhang
, “
Communication: Separable potential energy surfaces from multiplicative artificial neural networks
,”
J. Chem. Phys.
141
,
021101
(
2014
).
20.
J.
Chen
,
X.
Xu
, and
D. H.
Zhang
, “
Communication: An accurate global potential energy surface for the OH + CO H + CO2 reaction using neural networks
,”
J. Chem. Phys.
138
,
221104
(
2013
).
21.
J. S.
Smith
,
O.
Isayev
, and
A. E.
Roitberg
, “
ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost
,” preprint arXiv:1610.08935 (
2016
).
22.
P.
Pinski
and
G.
Csanyi
, “
Reactive many-body expansion for a protonated water cluster
,”
J. Chem. Theory Comput.
10
,
68
75
(
2013
).
23.
S. S.
Xantheas
, “
Ab initio studies of cyclic water clusters (H2O)n, n = 1-6. II. Analysis of many-body interactions
,”
J. Chem. Phys.
100
,
7523
(
1994
).
24.
S. S.
Xantheas
, “
Cooperativity and hydrogen bonding network in water clusters
,”
Chem. Phys.
258
,
225
231
(
2000
).
25.
A. D.
Kulkarni
,
V.
Ganesh
, and
S. R.
Gadre
, “
Many-body interaction analysis: Algorithm development and application to large molecular clusters
,”
J. Chem. Phys.
121
,
5043
(
2004
).
26.
J. F.
Ouyang
,
M. W.
Cvitkovic
, and
R. P.
Bettens
, “
Trouble with the many-body expansion
,”
J. Chem. Theory Comput.
10
,
3699
3707
(
2014
).
27.
S.
Boys
and
F.
Bernardi
, “
The calculation of small molecular interactions by the differences of separate total energies. some procedures with reduced errors
,”
Mol. Phys.
19
,
553
566
(
1970
).
28.
E. E.
Dahlke
and
D. G.
Truhlar
, “
Electrostatically embedded many-body correlation energy, with applications to the calculation of accurate second-order møller-plesset perturbation theory energies for large water clusters
,”
J. Chem. Theory Comput.
3
,
1342
1348
(
2007
).
29.
R. M.
Richard
and
J. M.
Herbert
, “
Many-body expansion with overlapping fragments: Analysis of two approaches
,”
J. Chem. Theory Comput.
9
,
1408
1416
(
2013
).
30.
K. U.
Lao
,
K.-Y.
Liu
,
R. M.
Richard
, and
J. M.
Herbert
, “
Understanding the many-body expansion for large systems. II. Accuracy considerations
,”
J. Chem. Phys.
144
,
164105
(
2016
).
31.
K. T.
Schütt
,
F.
Arbabzadah
,
S.
Chmiela
,
K. R.
Müller
, and
A.
Tkatchenko
, “
Quantum-chemical insights from deep tensor neural networks
,” preprint arXiv:1609.08259 (
2016
).
32.
S.
Chmiela
,
A.
Tkatchenko
,
H. E.
Sauceda
,
I.
Poltavsky
,
K.
Schütt
, and
K.-R.
Müller
, “
Machine learning of accurate energy-conserving molecular force fields
,” preprint arXiv:1611.04678 (
2016
).
33.
J.
Behler
, “
Atom-centered symmetry functions for constructing high-dimensional neural network potentials
,”
J. Chem. Phys.
134
,
074106
(
2011
).
34.
R. Z.
Khaliullin
,
H.
Eshet
,
T. D.
Kühne
,
J.
Behler
, and
M.
Parrinello
, “
Nucleation mechanism for the direct graphite-to-diamond phase transition
,”
Nat. Mater.
10
,
693
697
(
2011
).
35.
X.
Xin
,
J.
Chen
, and
D. H.
Zhang
, “
Global potential energy surface for the H + CH4 H2 + CH3 reaction using neural networks
,”
Chin. J. Chem. Phys.
27
,
373
(
2014
).
36.
K.
Shao
,
J.
Chen
,
Z.
Zhao
, and
D. H.
Zhang
, “
Communication: Fitting potential energy surfaces with fundamental invariant neural network
,”
J. Chem. Phys.
145
,
071101
(
2016
).
37.
J.
Li
and
H.
Guo
, “
Permutationally invariant fitting of intermolecular potential energy surfaces: A case study of the Ne–C2H2 system
,”
J. Chem. Phys.
143
,
214304
(
2015
).
38.
J.
Li
,
J.
Chen
,
Z.
Zhao
,
D.
Xie
,
D. H.
Zhang
, and
H.
Guo
, “
A permutationally invariant full-dimensional ab initio potential energy surface for the abstraction and exchange channels of the H + CH4 system
,”
J. Chem. Phys.
142
,
204302
(
2015
).
39.
G. R.
Medders
,
A. W.
Götz
,
M. A.
Morales
,
P.
Bajaj
, and
F.
Paesani
, “
On the representation of many-body interactions in water
,”
J. Chem. Phys.
143
,
104102
(
2015
).
40.
R.
Conte
,
C.
Qu
, and
J. M.
Bowman
, “
Permutationally invariant fitting of many-body, non-covalent interactions with application to three-body methane–water–water
,”
J. Chem. Theory Comput.
11
,
1631
1638
(
2015
).
41.
M.
Rupp
, “
Machine learning for quantum mechanics in a nutshell
,”
Int. J. Quantum Chem.
115
,
1058
1073
(
2015
).
42.
K.
Hansen
,
F.
Biegler
,
R.
Ramakrishnan
,
W.
Pronobis
,
O. A.
von Lilienfeld
,
K.-R.
Müller
, and
A.
Tkatchenko
, “
Machine learning predictions of molecular properties: Accurate many-body potentials and nonlocality in chemical space
,”
J. Phys. Chem. Lett.
6
,
2326
2331
(
2015
).
43.
G.
Montavon
,
M.
Rupp
,
V.
Gobre
,
A.
Vazquez-Mayagoitia
,
K.
Hansen
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Machine learning of molecular electronic properties in chemical compound space
,”
New J. Phys.
15
,
095003
(
2013
).
44.
G.
Pilania
,
C.
Wang
,
X.
Jiang
,
S.
Rajasekaran
, and
R.
Ramprasad
, “
Accelerating materials property predictions using machine learning
,”
Sci. Rep.
3
,
2810
(
2013
).
45.
S. A.
Ghasemi
,
A.
Hofstetter
,
S.
Saha
, and
S.
Goedecker
, “
Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network
,”
Phys. Rev. B
92
,
045131
(
2015
).
46.
K.
Schütt
,
H.
Glawe
,
F.
Brockherde
,
A.
Sanna
,
K.
Müller
, and
E.
Gross
, “
How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
,”
Phys. Rev. B
89
,
205118
(
2014
).
47.
R.
Olivares-Amaya
,
C.
Amador-Bedolla
,
J.
Hachmann
,
S.
Atahan-Evrenk
,
R. S.
Sánchez-Carrera
,
L.
Vogt
, and
A.
Aspuru-Guzik
, “
Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics
,”
Energy Environ. Sci.
4
,
4849
4861
(
2011
).
48.
X.
Ma
,
Z.
Li
,
L. E.
Achenie
, and
H.
Xin
, “
Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening
,”
J. Phys. Chem. Lett.
6
,
3528
3533
(
2015
).
49.
V.
Ediz
,
A. C.
Monda
,
R. P.
Brown
, and
D. J.
Yaron
, “
Using molecular similarity to develop reliable models of chemical reactions in complex environments
,”
J. Chem. Theory Comput.
5
,
3175
3184
(
2009
).
50.
A.
Lopez-Bezanilla
and
O. A.
von Lilienfeld
, “
Modeling electronic quantum transport with machine learning
,”
Phys. Rev. B
89
,
235411
(
2014
).
51.
J. C.
Snyder
,
M.
Rupp
,
K.
Hansen
,
L.
Blooston
,
K.-R.
Müller
, and
K.
Burke
, “
Orbital-free bond breaking via machine learning
,”
J. Chem. Phys.
139
,
224104
(
2013
).
52.
J. C.
Snyder
,
M.
Rupp
,
K.
Hansen
,
K.-R.
Müller
, and
K.
Burke
, “
Finding density functionals with machine learning
,”
Phys. Rev. Lett.
108
,
253002
(
2012
).
53.
K.
Yao
and
J.
Parkhill
, “
Kinetic energy of hydrocarbons as a function of electron density and convolutional neural networks
,”
J. Chem. Theory Comput.
12
,
1139
1147
(
2016
).
54.
J.
Hachmann
,
R.
Olivares-Amaya
,
S.
Atahan-Evrenk
,
C.
Amador-Bedolla
,
R. S.
Sánchez-Carrera
,
A.
Gold-Parker
,
L.
Vogt
,
A. M.
Brockway
, and
A.
Aspuru-Guzik
, “
The harvard clean energy project: Large-scale computational screening and design of organic photovoltaics on the world community grid
,”
J. Phys. Chem. Lett.
2
,
2241
2251
(
2011
).
55.
J.
Hachmann
,
R.
Olivares-Amaya
,
A.
Jinich
,
A. L.
Appleton
,
M. A.
Blood-Forsythe
,
L. R.
Seress
,
C.
Roman-Salgado
,
K.
Trepte
,
S.
Atahan-Evrenk
, and
S.
Er
, “
Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry–the harvard clean energy project
,”
Energy Environ. Sci.
7
,
698
704
(
2014
).
56.
G.
Hautier
,
C. C.
Fischer
,
A.
Jain
,
T.
Mueller
, and
G.
Ceder
, “
Finding natures missing ternary oxide compounds using machine learning and density functional theory
,”
Chem. Mater.
22
,
3762
3767
(
2010
).
57.
V.
Ediz
,
J. L.
Lee
,
B. A.
Armitage
, and
D.
Yaron
, “
Molecular engineering of torsional potentials in fluorogenic dyes via electronic substituent effects
,”
J. Phys. Chem. A
112
,
9692
9701
(
2008
).
58.
M.
Malshe
,
R.
Narulkar
,
L.
Raff
,
M.
Hagan
,
S.
Bukkapatnam
,
P.
Agrawal
, and
R.
Komanduri
, “
Development of generalized potential-energy surfaces using many-body expansions, neural networks, and moiety energy approximations
,”
J. Chem. Phys.
130
,
184102
(
2009
).
59.
A. P.
Bartók
,
M. J.
Gillan
,
F. R.
Manby
, and
G.
Csányi
, “
Machine-learning approach for one-and two-body corrections to density functional theory: Applications to molecular and condensed water
,”
Phys. Rev. B
88
,
054104
(
2013
).
60.
M.
Gastegger
,
C.
Kauffmann
,
J.
Behler
, and
P.
Marquetand
, “
Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes
,”
J. Chem. Phys.
144
,
194110
(
2016
).
61.
G. L.
Hart
,
V.
Blum
,
M. J.
Walorski
, and
A.
Zunger
, “
Evolutionary approach for determining first-principles hamiltonians
,”
Nat. Mater.
4
,
391
394
(
2005
).
62.
V.
Blum
,
G. L. W.
Hart
,
M. J.
Walorski
, and
A.
Zunger
, “
Using genetic algorithms to map first-principles results to model hamiltonians: Application to the generalized ising model for alloys
,”
Phys. Rev. B
72
,
165113
(
2005
).
63.
S.
Manzhos
and
T.
Carrington
, “
A random-sampling high dimensional model representation neural network for building potential energy surfaces
,”
J. Chem. Phys.
125
,
084109
(
2006
).
64.
S.
Manzhos
and
T.
Carrington
, “
Using neural networks to represent potential surfaces as sums of products
,”
J. Chem. Phys.
125
,
194105
(
2006
).
65.
S.
Manzhos
and
T.
Carrington
, “
Using neural networks, optimized coordinates, and high-dimensional model representations to obtain a vinyl bromide potential surface
,”
J. Chem. Phys.
129
,
224104
(
2008
).
66.
S.
Manzhos
,
K.
Yamashita
, and
T.
Carrington
, Jr.
, “
Fitting sparse multidimensional data with low-dimensional terms
,”
Comput. Phys. Commun.
180
,
2002
2012
(
2009
).
67.
S.
Manzhos
,
R.
Dawes
, and
T.
Carrington
, “
Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces
,”
Int. J. Quantum Chem.
115
,
1012
1020
(
2015
).
68.
J.
Cui
,
H.
Liu
, and
K. D.
Jordan
, “
Theoretical characterization of the (H2O)21 cluster: Application of an n-body decomposition procedure
,”
J. Phys. Chem. B
110
,
18872
18878
(
2006
).
69.
U.
Góra
,
R.
Podeszwa
,
W.
Cencek
, and
K.
Szalewicz
, “
Interaction energies of large clusters from many-body expansion
,”
J. Chem. Phys.
135
,
224102
(
2011
).
70.
A.
Hermann
,
R. P.
Krawczyk
,
M.
Lein
,
P.
Schwerdtfeger
,
I. P.
Hamilton
, and
J. J.
Stewart
, “
Convergence of the many-body expansion of interaction potentials: From van der waals to covalent and metallic systems
,”
Phys. Rev. A
76
,
013202
(
2007
).
71.
G. R.
Medders
and
F.
Paesani
, “
Many-body convergence of the electrostatic properties of water
,”
J. Chem. Theory Comput.
9
,
4844
4852
(
2013
).
72.
B.
Paulus
,
K.
Rosciszewski
,
N.
Gaston
,
P.
Schwerdtfeger
, and
H.
Stoll
, “
Convergence of the ab initio many-body expansion for the cohesive energy of solid mercury
,”
Phys. Rev. B
70
,
165106
(
2004
).
73.
C. J.
Fennell
and
J. D.
Gezelter
, “
Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics
,”
J. Chem. Phys.
124
,
234104
(
2006
).
74.
M.
Lamichhane
,
J. D.
Gezelter
, and
K. E.
Newman
, “
Real space electrostatics for multipoles. I. Development of methods
,”
J. Chem. Phys.
141
,
134109
(
2014
).
75.
M.
Lamichhane
,
K. E.
Newman
, and
J. D.
Gezelter
, “
Real space electrostatics for multipoles. II. Comparisons with the Ewald sum
,”
J. Chem. Phys.
141
,
134110
(
2014
).
76.
D. S.
Cerutti
,
T. E.
Cheatham
 III
,
T. A.
Darden
,
R. E.
Duke
,
T. J.
Giese
,
H.
Gohlke
,
A. W.
Goetz
,
N.
Homeyer
,
S.
Izadi
,
P.
Janowski
,
J.
Kaus
,
A.
Kovalenko
,
T. S.
Lee
,
S.
LeGrand
,
P.
Li
,
C.
Lin
,
T.
Luchko
,
R.
Luo
,
B.
Madej
,
D.
Mermelstein
,
K. M.
Merz
,
G.
Monard
,
H.
Nguyen
,
H. T.
Nguyen
,
I.
Omelyan
,
A.
Onufriev
,
D. R.
Roe
,
A.
Roitberg
,
C.
Sagui
,
C. L.
Simmerling
,
J.
Swails
,
W.
Botello-Smith
,
J.
Swails
,
R. C.
Walker
,
J.
Wang
,
R. M.
Wolf
,
X.
Wu
,
L.
Xiao
,
D. A.
Case
,
R. M.
Betz
, and
P.
Kollman
,
Amber 2016
(
University of California
,
San Francisco
,
2016
).
77.
R. M.
Richard
,
K. U.
Lao
, and
J. M.
Herbert
, “
Aiming for benchmark accuracy with the many-body expansion
,”
Acc. Chem. Res.
47
,
2828
2836
(
2014
).
78.
R. M.
Richard
,
K. U.
Lao
, and
J. M.
Herbert
, “
Understanding the many-body expansion for large systems. I. Precision considerations
,”
J. Chem. Phys.
141
,
014108
(
2014
).
79.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W.
Hanson-Heine
,
P. H.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T.
Van Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M.
Gill
, and
M.
Head-Gordon
, “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).
80.
M.
Rupp
,
A.
Tkatchenko
,
K.-R.
Müller
, and
O. A.
von Lilienfeld
, “
Fast and accurate modeling of molecular atomization energies with machine learning
,”
Phys. Rev. Lett.
108
,
058301
(
2012
).
81.
K.
Hansen
,
G.
Montavon
,
F.
Biegler
,
S.
Fazli
,
M.
Rupp
,
M.
Scheffler
,
O. A.
Von Lilienfeld
,
A.
Tkatchenko
, and
K.-R.
Muller
, “
Assessment and validation of machine learning methods for predicting molecular atomization energies
,”
J. Chem. Theory Comput.
9
,
3404
3419
(
2013
).
82.
G.
Montavon
,
K.
Hansen
,
S.
Fazli
,
M.
Rupp
,
F.
Biegler
,
A.
Ziehe
,
A.
Tkatchenko
,
A. V.
Lilienfeld
, and
K.-R.
Müller
, “
Learning invariant representations of molecules for atomization energy prediction
,” in
Advances in Neural Information Processing Systems
, edited by
F.
Pereira
,
C. J. C.
Burges
,
L.
Bottou
, and
K. Q.
Weinberger
(
Curran Associates, Inc.
,
2012
), Vol. 25, pp.
440
448
.
83.
F.
Faber
,
A.
Lindmaa
,
O. A.
von Lilienfeld
, and
R.
Armiento
, “
Crystal structure representations for machine learning models of formation energies
,”
Int. J. Quantum Chem.
115
,
1094
1101
(
2015
).
84.
A. P.
Bartók
and
M. C.
Payne
, “
Gaussian approximation potentials: The accuracy of quantum mechanics, without the electrons
,”
Phys. Rev. Lett.
104
,
136403
(
2010
).
85.
A. P.
Bartók
,
R.
Kondor
, and
G.
Csányi
, “
On representing chemical environments
,”
Phys. Rev. B
87
,
184115
(
2013
).
86.
A.
Sadeghi
,
S. A.
Ghasemi
,
B.
Schaefer
,
S.
Mohr
,
M. A.
Lill
, and
S.
Goedecker
, “
Metrics for measuring distances in configuration spaces
,”
J. Chem. Phys.
139
,
184118
(
2013
).
87.
L.
Zhu
,
M.
Amsler
,
T.
Fuhrer
,
B.
Schaefer
,
S.
Faraji
,
S.
Rostami
,
S. A.
Ghasemi
,
A.
Sadeghi
,
M.
Grauzinyte
, and
C.
Wolverton
, “
A fingerprint based metric for measuring similarities of crystalline structures
,”
J. Chem. Phys.
144
,
034203
(
2016
).
88.
B.
Schaefer
and
S.
Goedecker
, “
Computationally efficient characterization of potential energy surfaces based on fingerprint distances
,”
J. Chem. Phys.
145
,
034101
(
2016
).
89.
O. A.
von Lilienfeld
,
R.
Ramakrishnan
,
M.
Rupp
, and
A.
Knoll
, “
Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties
,”
Int. J. Quantum Chem.
115
,
1084
1093
(
2015
).
90.
A.
Krizhevsky
,
I.
Sutskever
, and
G. E.
Hinton
, “
Imagenet classification with deep convolutional neural networks
,” in
Advances in Neural Information Processing Systems
, edited by
F.
Pereira
,
C. J. C.
Burges
,
L.
Bottou
, and
K. Q.
Weinberger
(
Curran Associates, Inc.
,
2012
), Vol. 25, pp.
1097
1105
.
91.
S.
Song
and
J.
Xiao
, “
Sliding shapes for 3D object detection in depth images
,” in
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6-12 September 2014, Proceedings, Part VI
, edited by
D.
Fleet
,
T.
Pajdla
,
B.
Schiele
, and
T.
Tuytelaars
(
Springer International Publishing
,
Cham
,
2014
), pp.
634
651
.
92.
A.
Shrivastava
and
A.
Gupta
, “
Building part-based object detectors via 3D geometry
,” in
The IEEE International Conference on Computer Vision (ICCV)
,
2013
.
93.
K.
Lai
,
L.
Bo
,
X.
Ren
, and
D.
Fox
, “
Detection-based object labeling in 3D scenes
,” in
IEEE International Conference on Robotics and Automation (ICRA), 2012
(
IEEE, 2012
), pp.
1330
1337
.
94.
B.-s.
Kim
,
S.
Xu
, and
S.
Savarese
, “
Accurate localization of 3D objects from RGB-D data using segmentation hypotheses
,” in
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
2013
.
95.
I.
Goodfellow
,
J.
Pouget-Abadie
,
M.
Mirza
,
B.
Xu
,
D.
Warde-Farley
,
S.
Ozair
,
A.
Courville
, and
Y.
Bengio
, “
Generative adversarial nets
,” in
Advances in Neural Information Processing Systems
, edited by
Z.
Ghahramani
,
M.
Welling
,
C.
Cortes
,
N. D.
Lawrence
, and
K. Q.
Weinberger
(
Curran Associates, Inc.
,
2014
), Vol. 27, pp.
2672
2680
.
96.
E. L.
Denton
,
S.
Chintala
,
A.
Szlam
, and
R.
Fergus
, “
Deep generative image models using a laplacian pyramid of adversarial networks
,” in
Advances in Neural Information Processing Systems
, edited by
C.
Cortes
,
N. D.
Lawrence
,
D. D.
Lee
,
M.
Sugiyama
, and
R.
Garnett
(
Curran Associates, Inc.
,
2015
), Vol. 28, pp.
1486
1494
.
97.
A.
Radford
,
L.
Metz
, and
S.
Chintala
, “
Unsupervised representation learning with deep convolutional generative adversarial networks
,” e-print arXiv:1511.06434(
2015
).
98.
D. J.
Im
,
C. D.
Kim
,
H.
Jiang
, and
R.
Memisevic
, “
Generating images with recurrent adversarial networks
,” e-print arXiv:1602.05110 (
2016
).
99.
D.
Yoo
,
N.
Kim
,
S.
Park
,
A. S.
Paek
, and
I.
Kweon
, “
Pixel-level domain transfer
,” e-print arXiv:1603.07442 (
2016
).
100.
T.
Salimans
,
I. J.
Goodfellow
,
W.
Zaremba
,
V.
Cheung
,
A.
Radford
, and
X.
Chen
, “
Improved techniques for training gans
,” e-print arXiv:1606.03498 (
2016
).
101.
G. E.
Dahl
,
T. N.
Sainath
, and
G. E.
Hinton
, “
Improving deep neural networks for lvcsr using rectified linear units and dropout
,” in
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013
(
IEEE
,
2013
), pp.
8609
8613
.
102.
T.
Hastie
,
R.
Tibshirani
,
J.
Friedman
, and
J.
Franklin
, “
The elements of statistical learning: Data mining, inference and prediction
,”
Math. Intell.
27
,
83
85
(
2005
).
103.
K. C.
Kiwiel
, “
Convergence and efficiency of subgradient methods for quasiconvex minimization
,”
Math. Prog.
90
,
1
25
(
2001
).
104.
D. E.
Rumelhart
,
G. E.
Hinton
, and
R. J.
Williams
, “
Learning representations by back-propagating errors
,”
Nature
323
,
533
536
(
1986
).
105.
S.
Kazachenko
,
S.
Bulusu
, and
A. J.
Thakkar
, “
Methanol clusters (CH3OH)n: Putative global minimum-energy structures from model potentials and dispersion-corrected density functional theory
,”
J. Chem. Phys.
138
,
224303
(
2013
).
106.
Y.
Shi
,
Z.
Xia
,
J.
Zhang
,
R.
Best
,
C.
Wu
,
J. W.
Ponder
, and
P.
Ren
, “
Polarizable atomic multipole-based AMOEBA force field for proteins
,”
J. Chem. Theory Comput.
9
,
4046
4063
(
2013
).
107.
P.
Ren
,
C.
Wu
, and
J. W.
Ponder
, “
Polarizable atomic multipole-based molecular mechanics for organic molecules
,”
J. Chem. Theory Comput.
7
,
3143
3161
(
2011
).
108.
J. W.
Ponder
,
C.
Wu
,
P.
Ren
,
V. S.
Pande
,
J. D.
Chodera
,
M. J.
Schnieders
,
I.
Haque
,
D. L.
Mobley
,
D. S.
Lambrecht
,
R. A.
DiStasio
,
M.
Head-Gordon
,
G. N. I.
Clark
,
M. E.
Johnson
, and
T.
Head-Gordon
, “
Current status of the AMOEBA polarizable force field
,”
J. Phys. Chem. B
114
,
2549
2564
(
2010
).

Supplementary Material

You do not currently have access to this content.