New exact equations are derived for the terms contributing to the binding free energy (ΔG0) of a ligand-receptor pair using our recently introduced formalism which we here call perturbation-divergence formalism (PDF). Specifically, ΔG0 equals the sum of the average of the perturbation (pertaining to new interactions) and additional dissipative terms. The average of the perturbation includes the sum of the average receptor-ligand interactions and the average of the change of solvation energies upon association. The Kullback-Leibler (KL) divergence quantifies the energetically dissipative terms, which are due to the configurational changes and, using the chain rule of KL divergence, can be decomposed into (i) dissipation due to limiting the external liberation (translation and rotation) of the ligand relative to the receptor and (ii) dissipation due to conformational (internal) changes inside the receptor and the ligand. We also identify all exactly canceling energetic terms which do not contribute to ΔG0. Furthermore, the PDF provides a new approach towards dimensionality reduction in the representation of the association process and towards relating the dynamic (high dimensional) with the thermodynamic (one-dimensional) changes.

1.
R. H.
Fowler
and
E. A.
Guggenheim
,
Statistical Thermodynamics: A Version of Statistical Mechanics for Students of Physics and Chemistry
(
University Press
,
1956
).
2.
B. L.
Tembre
and
J. A.
Mc Cammon
,
Comput. Chem.
8
,
281
(
1984
).
3.
W. L.
Jorgensen
,
J. K.
Buckner
,
S.
Boudon
, and
J.
Tirado-Rives
,
J. Chem. Phys.
89
,
3742
(
1988
).
4.
M. K.
Gilson
,
J. A.
Given
,
B. L.
Bush
, and
J. A.
McCammon
,
Biophys. J.
72
,
1047
(
1997
).
5.
A.
Pohorille
,
C.
Jarzynski
, and
C.
Chipot
,
J. Phys. Chem. B
114
,
10235
(
2010
).
6.
S.
Boresch
,
F.
Tettinger
,
M.
Leitgeb
, and
M.
Karplus
,
J. Phys. Chem. B
107
,
9535
(
2003
).
7.
Y.
Deng
and
B.
Roux
,
J. Chem. Theory Comput.
2
,
1255
(
2006
).
8.
D. L.
Mobley
and
K. A.
Dill
,
Structure
17
,
489
(
2009
).
9.
E.
Gallicchio
,
M.
Lapelosa
, and
R. M.
Levy
,
J. Chem. Theory Comput.
6
,
2961
(
2010
).
10.
L.
Li
,
J. J.
Dantzer
,
J.
Nowacki
,
B. J.
O’Callaghan
, and
S. O.
Meroueh
,
Chem. Biol. Drug Des.
71
,
529
(
2008
).
11.
M.
Karplus
and
J. N.
Kushick
,
Macromolecules
14
,
325
(
1981
).
12.
J.
Schlitter
,
Chem. Phys. Lett.
215
,
617
(
1993
).
13.
B.
Tidor
and
M.
Karplus
,
J. Mol. Biol.
238
,
405
(
1994
).
14.
I.
Andricioaei
and
M.
Karplus
,
J. Chem. Phys.
115
,
6289
(
2001
).
15.
A.
Mittermaier
and
L. E.
Kay
,
Science
312
,
224
(
2006
).
16.
K. K.
Frederick
,
M. S.
Marlow
,
K. G.
Valentine
, and
A. J.
Wand
,
Nature
448
,
325
(
2007
).
17.
S.-R.
Tzeng
and
C. G.
Kalodimos
,
Nature
488
,
236
(
2012
).
18.
C.
Diehl
,
O.
Engström
,
T.
Delaine
,
M.
Håkansson
,
S.
Genheden
,
K.
Modig
,
H.
Leffler
,
U.
Ryde
,
U. J.
Nilsson
, and
M.
Akke
,
J. Am. Chem. Soc.
132
,
14577
(
2010
).
19.
J. D.
Forman-Kay
,
Nat. Struct. Mol. Biol.
6
,
1086
(
1999
).
20.
L.
Zídek
,
M. V.
Novotny
, and
M. J.
Stone
,
Nat. Struct. Biol.
6
,
1118
(
1999
).
21.
M.
Ahmad
,
V.
Helms
,
T.
Lengauer
, and
O. V.
Kalinina
,
J. Chem. Theory Comput.
11
,
1410
(
2015
).
22.
T. S. G.
Olsson
,
J. E.
Ladbury
,
W. R.
Pitt
, and
M. A.
Williams
,
Protein Sci.
20
,
1607
(
2011
).
23.
R.
Lumry
and
S.
Rajender
,
Biopolymers
9
,
1125
(
1970
).
24.
J. E.
DeLorbe
,
J. H.
Clements
,
B. B.
Whiddon
, and
S. F.
Martin
,
ACS Med. Chem. Lett.
1
,
448
(
2010
).
25.
26.
H.-A.
Yu
and
M.
Karplus
,
J. Chem. Phys.
89
,
2366
(
1988
).
27.
M.
Ahmad
,
V.
Helms
,
T.
Lengauer
, and
O. V.
Kalinina
,
J. Chem. Theory Comput.
11
,
2945
(
2015
).
28.
S.
Kullback
and
R. A.
Leibler
,
Ann. Math. Stat.
22
,
79
(
1951
).
29.
T. M.
Cover
and
J. A.
Thomas
,
Elements of Information Theory
, 2nd ed. (
Wiley-Interscience
,
Hoboken, NJ
,
2006
).
30.
C.
Jarzynski
,
Phys. Rev. E
73
,
46105
(
2006
).
31.
32.
E.
Feng
and
G.
Crooks
,
Phys. Rev. Lett.
101
,
090602
(
2008
).
33.
S.
Still
,
D. A.
Sivak
,
A. J.
Bell
, and
G. E.
Crooks
,
Phys. Rev. Lett.
109
,
120604
(
2012
).
34.
D. A.
Sivak
and
G. E.
Crooks
,
Phys. Rev. Lett.
108
,
150601
(
2012
).
35.
D.
Wu
and
D. A.
Kofke
,
J. Chem. Phys.
123
,
54103
(
2005
).
36.
C. L.
McClendon
,
L.
Hua
,
G.
Barreiro
, and
M. P.
Jacobson
,
J. Chem. Theory Comput.
8
,
2115
(
2012
).
37.
D.
Ming
and
M. E.
Wall
,
Proteins: Struct., Funct., Bioinf.
59
,
697
(
2005
).
38.
D.
Ming
and
M. E.
Wall
,
J. Mol. Biol.
358
,
213
(
2006
).
40.
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
41.
M.
Ahmad
,
V.
Helms
,
O. V.
Kalinina
, and
T.
Lengauer
,
J. Phys. Chem. B
120
,
2138
(
2016
).
42.
S.
Kullback
,
Information Theory and Statistics
(
Dover Publications
,
Mineola, NY
,
1997
).
43.
V.
Hnizdo
and
M. K.
Gilson
,
Entropy
12
,
578
(
2010
).
44.
C. H.
Bennett
,
J. Comput. Phys.
22
,
245
(
1976
).
45.
I. Z.
Steinberg
and
H. A.
Scheraga
,
J. Biol. Chem.
238
,
172
(
1963
).
46.
A. V.
Finkelstein
and
J.
Janin
,
Protein Eng.
3
,
1
(
1989
).
47.
A.
Ben-Shaul
,
N.
Ben-Tal
, and
B.
Honig
,
Biophys. J.
71
,
130
(
1996
).
49.
J.
Hermans
and
L.
Wang
,
J. Am. Chem. Soc.
119
,
2707
(
1997
).
50.
N.
Ben-Tal
,
B.
Honig
,
C. K.
Bagdassarian
, and
A.
Ben-Shaul
,
Biophys. J.
79
,
1180
(
2000
).
51.
Y. B.
Yu
,
P. L.
Privalov
, and
R. S.
Hodges
,
Biophys. J.
81
,
1632
(
2001
).
52.
J.
Carlsson
and
J.
Åqvist
,
J. Phys. Chem. B
109
,
6448
(
2005
).
53.
D. J.
Huggins
,
J. Comput. Chem.
35
,
377
(
2014
).
54.
D. J.
Huggins
,
J. Chem. Theory Comput.
10
,
3617
(
2014
).
55.
F.
Fogolari
,
C. J.
Dongmo Foumthuim
,
S.
Fortuna
,
M. A.
Soler
,
A.
Corazza
, and
G.
Esposito
,
J. Chem. Theory Comput.
12
,
1
(
2016
).
56.
S.-H.
Chong
and
S.
Ham
,
J. Chem. Theory Comput.
12
,
2509
(
2016
).
57.
M. K.
Gilson
and
H.-X.
Zhou
,
Annu. Rev. Biophys. Biomol. Struct.
36
,
21
(
2007
).
58.
I.
Massova
and
P. A.
Kollman
,
Perspect. Drug Discovery Des.
18
,
113
(
2000
).
59.
J.
Wang
,
P.
Morin
,
W.
Wang
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
123
,
5221
(
2001
).
60.
M.
Sugiyama
,
T.
Suzuki
, and
T.
Kanamori
,
Density Ratio Estimation in Machine Learning
(
Cambridge University Press
,
2012
).

Supplementary Material

You do not currently have access to this content.