This article introduces the restricted-active-space n-spin flip configuration interaction models, RAS(S)-SF and RAS(S,2h,2p)-SF, which provide highly correlated, yet low cost approaches for treating polyradical systems. These levels of theory add electronic degrees of freedom beyond those of previous spin flip approaches in order to achieve accurate ground and excited state energetics. The effects of additional dynamic correlation were investigated by comparing these two techniques to the prior RAS(h,p)-SF method on a variety of test systems, including multiple electronic states of methylene, tetramethyleneethane, three binuclear transition metal complexes, and a tetracene dimer. RAS(S,2h,2p)-SF significantly improves state descriptions in all cases and provides high accuracy even when using a minimal number of spin flips. Furthermore, this correlated level of theory is shown to be extensible to the large systems involved in singlet fission, where the multi-excitonic states in tetracene dimers are difficult to simulate with standard methods and therefore are still a matter of debate. Using a triple-zeta basis, the double triplet state, 1(TT), is predicted to be unbound. This result contradicts lower levels of theory and provides important insight into tetracene’s ability to undergo efficient singlet fission.

1.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
2.
R.
Shepard
, in
Advances in Chemical Physics Ab Initio Methods Quantum Chemistry Part 2, Vol. 69
, edited by
K. P.
Lawley
(
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
1987
), pp.
63
200
.
3.
S.
Knecht
,
E. D.
Hedegård
,
S.
Keller
,
A.
Kovyrshin
,
Y.
Ma
,
A.
Muolo
,
C. J.
Stein
, and
M.
Reiher
,
CHIMICA Int. J. Chem.
70
,
244
(
2016
).
4.
G. K.-L.
Chan
and
S.
Sharma
,
Annu. Rev. Phys. Chem.
62
,
465
(
2011
).
5.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
54106
(
2009
).
6.
G. H.
Booth
and
A.
Alavi
,
J. Chem. Phys.
132
,
174104
(
2010
).
7.
R. E.
Thomas
,
Q.
Sun
,
A.
Alavi
, and
G. H.
Booth
,
J. Chem. Theory Comput.
11
,
5316
(
2015
).
8.
A. A.
Holmes
,
N. M.
Tubman
, and
C. J.
Umrigar
,
J. Chem. Theory Comput.
12
,
3674
(
2016
).
9.
S.
Sharma
,
A.
Holmes
,
G.
Jeanmairet
,
A.
Alavi
, and
C. J.
Umrigar
, e-print arXiv:1610.06660 [physics.chem-ph] (
2016
).
10.
N. M.
Tubman
,
J.
Lee
,
T. Y.
Takeshita
,
M.
Head-Gordon
, and
K. B.
Whaley
,
J. Chem. Phys.
145
,
44112
(
2016
).
11.
J. B.
Schriber
and
F. A.
Evangelista
,
J. Chem. Phys.
144
,
161106
(
2016
).
12.
T.
Zhang
and
F. A.
Evangelista
,
J. Chem. Theory Comput.
12
,
4326
(
2016
).
13.
A. I.
Krylov
,
Chem. Phys. Lett.
338
,
375
(
2001
).
14.
A. I.
Krylov
,
Chem. Phys. Lett.
350
,
522
(
2001
).
15.
A. I.
Krylov
,
L. V.
Slipchenko
, and
S. V.
Levchenko
,
Electron Correlation Methodology
(
American Chemical Society
,
Washington, DC
,
2007
).
16.
Y.
Shu
,
E. G.
Hohenstein
, and
B. G.
Levine
,
J. Chem. Phys.
142
,
24102
(
2015
).
17.
I.
Shavitt
, in
Methods Electronic Structure Theory
(
Springer US
,
Boston, MA
,
1977
), pp.
189
275
.
18.
E. R.
Davidson
and
L. E.
McMurchie
,
Excited State
(
Elsevier
,
1982
), pp.
1
39
.
19.
R. J.
Rico
and
M.
Head-Gordon
,
Chem. Phys. Lett.
213
,
224
(
1993
).
20.
J. S.
Sears
,
C. D.
Sherrill
, and
A. I.
Krylov
,
J. Chem. Phys.
118
,
9084
(
2003
).
21.
D.
Casanova
and
M.
Head-Gordon
,
J. Chem. Phys.
129
,
1
(
2008
).
22.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. A.
Jensen
,
J. Chem. Phys.
89
,
2185
(
1988
).
23.
P. A.
Malmqvist
,
A.
Rendell
, and
B. O.
Roos
,
J. Phys. Chem.
94
,
5477
(
1990
).
24.
D.
Casanova
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
11
,
9779
(
2009
).
25.
P. M.
Zimmerman
,
F.
Bell
,
M.
Goldey
,
A. T.
Bell
, and
M.
Head-Gordon
,
J. Chem. Phys.
137
,
164110
(
2012
).
26.
F.
Bell
,
P. M.
Zimmerman
,
D.
Casanova
,
M.
Goldey
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
15
,
358
(
2013
).
27.
N. J.
Mayhall
,
M.
Goldey
, and
M.
Head-Gordon
,
J. Chem. Theory Comput.
10
,
589
(
2014
).
28.
N. J.
Mayhall
and
M.
Head-Gordon
,
J. Chem. Phys.
141
,
44112
(
2014
).
29.
S. V.
Levchenko
and
A. I.
Krylov
,
J. Chem. Phys.
120
,
175
(
2004
).
30.
D.
Casanova
,
L. V.
Slipchenko
,
A. I.
Krylov
, and
M.
Head-Gordon
,
J. Chem. Phys.
130
,
44103
(
2009
).
32.
J.
Miralles
,
O.
Castell
,
R.
Caballol
, and
J. P.
Malrieu
,
Chem. Phys.
172
,
33
(
1993
).
33.
V. M.
García
,
O.
Castell
,
R.
Caballol
, and
J. P.
Malrieu
,
Chem. Phys. Lett.
238
,
222
(
1995
).
34.
V. M.
García
,
O.
Castell
,
M.
Reguero
, and
R.
Caballol
,
Mol. Phys.
87
,
1395
(
1996
).
35.
O.
Castell
,
V. M.
García
,
C.
Bo
, and
R.
Caballol
,
J. Comput. Chem.
17
,
42
(
1996
).
36.
V. M.
García
,
M.
Reguero
, and
R.
Caballol
,
Theor. Chem. Acc. Theory, Comput. Model. (Theor. Chim. Acta)
98
,
50
(
1997
).
37.
J.
Zapata-Rivera
,
R.
Caballol
, and
C. J.
Calzado
,
J. Comput. Chem.
32
,
1144
(
2011
).
38.
D.
Cremer
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
3
,
482
(
2013
).
39.
P. J.
Knowles
and
N. C.
Handy
,
Chem. Phys. Lett.
111
,
315
(
1984
).
40.
P. J.
Knowles
and
N. C.
Handy
,
Comput. Phys. Commun.
54
,
75
(
1989
).
41.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
Dover Publications
,
Mineola, New York
,
1989
).
42.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
43.
M. L.
Leininger
,
C. D.
Sherrill
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Comput. Chem.
22
,
1574
(
2001
).
44.
See http://www.openmp.org for OpenMP Architecture Review Board.
45.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
46.
C. D.
Sherrill
,
M. L.
Leininger
,
T. J.
Van Huis
, and
H. F.
Schaefer
,
J. Chem. Phys.
108
,
1040
(
1998
).
47.
Z. D.
Pozun
,
X.
Su
, and
K. D.
Jordan
,
J. Am. Chem. Soc.
135
,
13862
(
2013
).
48.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
49.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
50.
T. C.
Berkelbach
,
M. S.
Hybertsen
, and
D. R.
Reichman
,
J. Chem. Phys.
138
,
114103
(
2013
).
51.
D.
Holmes
,
S.
Kumaraswamy
,
A. J.
Matzger
, and
K. P. C.
Vollhardt
,
Chem. - Eur. J.
5
,
3399
(
1999
).
53.
C. W.
Bauschlicher
and
P. R.
Taylor
,
J. Chem. Phys.
85
,
6510
(
1986
).
54.
C. D.
Sherrill
,
T. J.
Van Huis
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Mol. Struct.: THEOCHEM
400
,
139
(
1997
).
55.
P. J.
Reynolds
,
M.
Dupuis
, and
W. A.
Lester
,
J. Chem. Phys.
82
,
1983
(
1985
).
56.
P. M.
Zimmerman
,
J.
Toulouse
,
Z.
Zhang
,
C. B.
Musgrave
, and
C. J.
Umrigar
,
J. Chem. Phys.
131
,
124103
(
2009
).
57.
M.
Włoch
,
J. R.
Gour
, and
P.
Piecuch
,
J. Phys. Chem. A
111
,
11359
(
2007
).
58.
L. V.
Slipchenko
and
A. I.
Krylov
,
J. Chem. Phys.
117
,
4694
(
2002
).
59.
E.
Rodriguez
,
M.
Reguero
, and
R.
Caballol
,
J. Phys. Chem. A
104
,
6253
(
2000
).
60.
J. H.
van Vleck
,
The Theory of Electric and Magnetic Susceptibilities
(
Clarendon Press
,
Oxford, UK
,
1932
).
61.
62.
C. J.
Calzado
,
J.
Cabrero
,
J. P.
Malrieu
, and
R.
Caballol
,
J. Chem. Phys.
116
,
2728
(
2002
).
63.
C. J.
Calzado
,
C.
Angeli
,
D.
Taratiel
,
R.
Caballol
, and
J.-P.
Malrieu
,
J. Chem. Phys.
131
,
44327
(
2009
).
64.
M. B.
Smith
and
J.
Michl
,
Chem. Rev.
110
,
6891
(
2010
).
65.
M. B.
Smith
and
J.
Michl
,
Annu. Rev. Phys. Chem.
64
,
361
(
2013
).
66.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
67.
M. J. Y.
Tayebjee
,
A. A.
Gray-Weale
, and
T. W.
Schmidt
,
J. Phys. Chem. Lett.
3
,
2749
(
2012
).
68.
P. M.
Zimmerman
,
Z.
Zhang
, and
C. B.
Musgrave
,
Nat. Chem.
2
,
648
(
2010
).
69.
P. M.
Zimmerman
,
F.
Bell
,
D.
Casanova
, and
M.
Head-Gordon
,
J. Am. Chem. Soc.
133
,
19944
(
2011
).
70.
P. M.
Zimmerman
,
C. B.
Musgrave
, and
M.
Head-Gordon
,
Acc. Chem. Res.
46
,
1339
(
2013
).
71.
X.
Feng
,
A. V.
Luzanov
, and
A. I.
Krylov
,
J. Phys. Chem. Lett.
4
,
3845
(
2013
).
72.
S.
Matsika
,
X.
Feng
,
A. V.
Luzanov
, and
A. I.
Krylov
,
J. Phys. Chem. A
118
,
11943
(
2014
).
73.
A. V.
Luzanov
,
D.
Casanova
,
X.
Feng
, and
A. I.
Krylov
,
J. Chem. Phys.
142
,
224104
(
2015
).
74.
A. B.
Kolomeisky
,
X.
Feng
, and
A. I.
Krylov
,
J. Phys. Chem. C
118
,
5188
(
2014
).
75.
N. V.
Korovina
,
S.
Das
,
Z.
Nett
,
X.
Feng
,
J.
Joy
,
R.
Haiges
,
A. I.
Krylov
,
S. E.
Bradforth
, and
M. E.
Thompson
,
J. Am. Chem. Soc.
138
,
617
(
2016
).
76.
N. J.
Mayhall
,
J. Chem. Theory Comput.
12
,
4263
(
2016
).
77.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
78.
Y. M.
Rhee
and
M.
Head-Gordon
,
J. Phys. Chem. A
111
,
5314
(
2007
).
79.
M. J. Y.
Tayebjee
,
S. N.
Sanders
,
E.
Kumarasamy
,
L. M.
Campos
,
M. Y.
Sfeir
, and
D. R.
McCamey
, “
Quintet multiexciton dynamics in singlet fission
,”
Nat. Phys.
(published online).
80.
Y.
Tomkiewicz
,
R. P.
Groff
, and
P.
Avakian
,
J. Chem. Phys.
54
,
4504
(
1971
).
81.
W.
Chan
,
M.
Ligges
, and
X.
Zhu
,
Nat. Chem.
4
,
840
(
2012
).
82.
S.
Sharifzadeh
,
P.
Darancet
,
L.
Kronik
, and
J. B.
Neaton
,
J. Phys. Chem. Lett.
4
,
2197
(
2013
).
83.
Y.
Wan
,
Z.
Guo
,
T.
Zhu
,
S.
Yan
,
J.
Johnson
, and
L.
Huang
,
Nat. Chem.
7
,
785
(
2015
).
84.
V. K.
Thorsmølle
,
R. D.
Averitt
,
J.
Demsar
,
D. L.
Smith
,
S.
Tretiak
,
R. L.
Martin
,
X.
Chi
,
B. K.
Crone
,
A. P.
Ramirez
, and
A. J.
Taylor
,
Phys. Rev. Lett.
102
,
3
(
2009
).
85.
J. J.
Burdett
,
A. M.
Müller
,
D.
Gosztola
, and
C. J.
Bardeen
,
J. Chem. Phys.
133
,
144506
(
2010
).
86.
M. W. B.
Wilson
,
A.
Rao
,
K.
Johnson
,
S.
Gélinas
,
R.
di Pietro
,
J.
Clark
, and
R. H.
Friend
,
J. Am. Chem. Soc.
135
,
16680
(
2013
).
87.
H. L.
Stern
,
A. J.
Musser
,
S.
Gelinas
,
P.
Parkinson
,
L. M.
Herz
,
M. J.
Bruzek
,
J.
Anthony
,
R. H.
Friend
, and
B. J.
Walker
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
7656
(
2015
).
88.
R. D.
Pensack
,
E. E.
Ostroumov
,
A. J.
Tilley
,
S.
Mazza
,
C.
Grieco
,
K. J.
Thorley
,
J. B.
Asbury
,
D. S.
Seferos
,
J. E.
Anthony
, and
G. D.
Scholes
,
J. Phys. Chem. Lett.
7
,
2370
(
2016
).
89.
S.-H.
Lim
,
T. G.
Bjorklund
,
F. C.
Spano
, and
C. J.
Bardeen
,
Phys. Rev. Lett.
92
,
107402
(
2004
).
90.
B.
Zhang
,
C.
Zhang
,
Y.
Xu
,
R.
Wang
,
B.
He
,
Y.
Liu
,
S.
Zhang
,
X.
Wang
, and
M.
Xiao
,
J. Chem. Phys.
141
,
244303
(
2014
).
91.
J.
Hachmann
,
J. J.
Dorando
,
M.
Avilés
, and
G. K.-L.
Chan
,
J. Chem. Phys.
127
,
134309
(
2007
).
92.
Y.
Sun
,
M.
Melchior
,
D. A.
Summers
,
R. C.
Thompson
,
S. J.
Rettig
, and
C.
Orvig
,
Inorg. Chem.
37
,
3119
(
1998
).
93.
E.
Pedersen
,
I.
Grenthe
,
V.
Nurmikko
,
J.
Galy
,
W. B.
Pearson
, and
V.
Meisalo
,
Acta Chem. Scand.
26
,
333
(
1972
).
94.
J. T.
Veal
,
D. Y.
Jeter
,
J. C.
Hempel
,
R. P.
Eckberg
,
W. E.
Hatfield
, and
D. J.
Hodgson
,
Inorg. Chem.
12
,
2928
(
1973
).

Supplementary Material

You do not currently have access to this content.