We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube’s modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.

2.
J. P.
Keener
and
J. J.
Tyson
,
Science
239
,
1284
(
1988
).
3.
M.
Cross
and
P.
Hohenberg
,
Rev. Mod. Phys.
65
,
851
(
1993
).
4.
P. C.
Bressloff
and
J. M.
Newby
,
Rev. Mod. Phys.
85
,
135
(
2013
).
5.
Chemical Waves and Patterns
, edited by
R.
Kapral
and
K.
Showalter
(
Kluwer
,
Dordrecht
,
1995
).
6.
M.
Bär
,
M.
Eiswirth
,
H. H.
Rotermund
, and
G.
Ertl
,
Phys. Rev. Lett.
69
,
945
(
1992
).
7.
J.
Laplante
and
T.
Erneux
,
J. Phys. Chem.
96
,
4931
(
1992
).
8.
B.
Matkowsky
and
G.
Sivashinsky
,
SIAM J. Appl. Math.
35
,
465
(
1978
).
9.
C.
Koch
and
I.
Segev
,
Nat. Neurosci.
3
,
1171
(
2000
).
10.
F.
Müller
,
L.
Schimansky-Geier
, and
D. E.
Postnov
,
Ecol. Complex.
14
,
21
(
2013
).
11.
M. A.
Dahlem
and
S. C.
Müller
,
S. Biol. Cybern.
88
,
419
(
2003
).
12.
Cardiac Electrophysiology: From Cell to Bedside
, 6th ed., edited by
D. P.
Zipes
and
J.
Jalife
(
W. B. Saunders
,
Philadelphia
,
2014
).
13.
N. T. J.
Bailey
,
The Mathematical Theory of Infectious Diseases and its Applications
(
Charles Griffin & Company Ltd.
,
1975
).
14.
A.
Galione
,
A.
McDougall
,
W. B.
Busa
,
N.
Willmott
,
I.
Gillot
, and
M.
Whitaker
,
Science
261
,
348
(
1993
).
15.
M.
Radszuweit
,
S.
Alonso
,
H.
Engel
, and
M.
Bär
,
Phys. Rev. Lett.
110
,
138102
(
2013
).
16.
J. S.
Bois
,
F.
Jülicher
, and
S. W.
Grill
,
Phys. Rev. Lett.
106
,
028103
(
2011
).
17.
C.
Shi
,
C.-H.
Huang
,
P. N.
Devreotes
, and
P. A.
Iglesias
,
PLoS Comput. Biol.
9
,
e1003122
(
2013
).
18.
V. K.
Vanag
and
I. R.
Epstein
,
Phys. Rev. Lett.
87
,
228301
(
2001
).
19.
A.
Azhand
,
J. F.
Totz
, and
H.
Engel
,
Europhys. Lett.
108
,
10004
(
2014
).
20.
J. F.
Totz
,
H.
Engel
, and
O.
Steinbock
,
New J. Phys.
17
,
093043
(
2015
).
21.
E. M.
Cherry
and
F. H.
Fenton
,
J. Theor. Biol.
285
,
164
(
2011
).
22.
S. R.
Kharche
,
I. V.
Biktasheva
,
G.
Seemann
,
H.
Zhang
, and
V. N.
Biktashev
,
BioMed Res. Int.
2015
,
731386
.
23.
M.
Yamazaki
,
S.
Mironov
,
C.
Taravant
,
J.
Brec
,
L. M.
Vaquero
,
K.
Bandaru
,
U. M. R.
Avula
,
H.
Honjo
,
I.
Kodama
,
O.
Berenfeld
, and
J.
Kalifa
,
Cardiovasc. Res.
94
,
48
(
2012
).
24.
J.
Pellman
,
R. C.
Lyon
, and
F.
Sheikh
,
J. Mol. Cell. Cardiol.
48
,
461
(
2010
).
25.
M.
Häusser
,
N.
Spruston
, and
G. J.
Stuart
,
Science
290
,
739
(
2000
).
26.
I.
Santamaria-Holek
,
Z. J.
Grzywna
, and
J. M.
Rubí
,
J. Non-Equilib. Thermodyn.
37
,
273
(
2012
).
27.
A.
Ledesma-Durán
,
S. I.
Hernández-Hernández
, and
I.
Santamaría-Holek
,
J. Phys. Chem. C
120
,
7810
(
2016
).
28.
K.
Suzuki
,
T.
Yoshinobu
, and
H.
Iwasaki
,
J. Phys. Chem. A
104
,
5154
(
2000
).
29.
C. N.
Baroud
,
F.
Okkels
,
L.
Ménétrier
, and
P.
Tabeling
,
Phys. Rev. E
67
,
060104
(
2003
).
30.
H.
Kitahata
,
K.
Fujio
,
J.
Gorecki
,
S.
Nakata
,
Y.
Igarashi
,
A.
Gorecka
, and
K.
Yoshikawa
,
J. Phys. Chem. A
113
,
10405
(
2009
).
31.
A.
Toth
,
V.
Gaspar
, and
K.
Showalter
,
J. Phys. Chem.
98
,
522
(
1994
).
32.
K.
Agladze
,
S.
Thouvenel-Romans
, and
O.
Steinbock
,
J. Phys. Chem. A
105
,
7356
(
2001
).
33.
B. T.
Ginn
,
B.
Steinbock
,
M.
Kahveci
, and
O.
Steinbock
,
J. Phys. Chem. A
108
,
1325
(
2004
).
34.
O.
Steinbock
,
P.
Kettunen
, and
K.
Showalter
,
J. Phys. Chem.
100
,
18970
(
1996
).
35.
J.
Wolff
,
A. G.
Papathanasiou
,
I. G.
Kevrekidis
,
H. H.
Rotermund
, and
G.
Ertl
,
Science
294
,
134
(
2001
).
36.
S.
Martens
,
J.
Löber
, and
H.
Engel
,
Phys. Rev. E
91
,
022902
(
2015
).
37.
I. V.
Biktasheva
,
H.
Dierckx
, and
V. N.
Biktashev
,
Phys. Rev. Lett.
114
,
068302
(
2015
).
38.
H.
Ke
,
Z.
Zhang
, and
O.
Steinbock
,
Chaos
25
,
064303
(
2015
).
40.
J.
Nagumo
,
S.
Arimoto
, and
S.
Yoshizawa
,
Proc. IRE
50
,
2061
(
1962
).
41.
A.
Hagberg
and
E.
Meron
,
Nonlinearity
7
,
805
(
1994
).
42.
F.
Schlögl
,
Z. Phys.
253
,
147
(
1972
).
43.
S.
Martens
,
G.
Schmid
,
L.
Schimansky-Geier
, and
P.
Hänggi
,
Phys. Rev. E
83
,
051135
(
2011
).
44.
S.
Martens
,
A. V.
Straube
,
G.
Schmid
,
L.
Schimansky-Geier
, and
P.
Hänggi
,
Phys. Rev. Lett.
110
,
010601
(
2013
).
45.
R.
Zwanzig
,
J. Phys. Chem.
96
,
3926
(
1992
).
46.

Supposing that the concentration profiles in leading order, u0, equal the product of particle number and the probabilities P(r, t) to find such a given molecule at position r at time t and assuming further that the probabilities P can also be expressed by the conditional probabilities p(ρ|x, t) ∝ 1/Q(x) times the marginal ones p(x, t), one obtains the Fick-Jacobs equation describing the spatial-temporal evolution for p(x, t), tp(x,t)=DxQ(x)xp/Q(x).

47.
J. P.
Keener
,
SIAM J. Appl. Math.
61
,
317
(
2000
).
48.
J.
Löber
,
M.
Bär
, and
H.
Engel
,
Phys. Rev. E
86
,
066210
(
2012
).
50.
G.
Nadin
,
J. Differ. Equations
249
,
1288
(
2010
).
51.
H.
Berestycki
,
F.
Hamel
, and
N.
Nadirashvili
,
J. Eur. Math. Soc.
7
,
173
(
2005
).
52.
J.
Löber
and
H.
Engel
,
Phys. Rev. Lett.
112
,
148305
(
2014
).
53.
I.
Dikshtein
,
A.
Neimann
, and
L.
Schimansky-Geier
,
Phys. Lett. A
246
,
259
(
1998
).
54.
G.
Dhatt
,
G.
Touzot
, and
E.
Lefrançois
,
Finite Element Method
,
Numerical Methods Series
(
Wiley
,
2012
).
55.
M. E.
Davis
,
Numerical Methods and Modeling for Chemical Engineers
(
Courier Corporation
,
2013
).
56.
H.
Johansen
and
P.
Colella
,
J. Comput. Phys.
147
,
60
(
1998
).
57.
A. A.
García-Chung
,
G.
Chacón-Acosta
, and
L.
Dagdug
,
J. Chem. Phys.
142
,
064105
(
2015
).
58.
T. A.
Davis
,
ACM Trans. Math. Software
30
,
196
(
2004
).
59.
P.
Grindrod
,
M. A.
Lewis
, and
J. D.
Murray
,
Proc. R. Soc. A
433
,
151
(
1991
).
60.
A. S.
Verkman
,
Trends Biochem. Sci.
27
,
27
(
2002
).
61.
S. L.
Dettmer
,
U. F.
Keyser
, and
S.
Pagliara
,
Rev. Sci. Instrum.
85
,
023708
(
2014
).
62.
P. S.
Burada
,
G.
Schmid
,
P.
Talkner
,
P.
Hänggi
,
D.
Reguera
, and
J. M.
Rubí
,
BioSystems
93
,
16
(
2008
).
63.
L.
Dagdug
,
M.-V.
Vazquez
,
A. M.
Berezhkovskii
,
V. Y.
Zitserman
, and
S. M.
Bezrukov
,
J. Chem. Phys.
136
,
204106
(
2012
).
64.
P. K.
Ghosh
,
P.
Hänggi
,
F.
Marchesoni
,
S.
Martens
,
F.
Nori
,
L.
Schimansky-Geier
, and
G.
Schmid
,
Phys. Rev. E
85
,
011101
(
2012
).
65.
A. E.
Cohen
and
W. E.
Moerner
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
4362
(
2006
).
66.
I. M.
Sokolov
,
Eur. Phys. J.
31
,
1353
(
2010
).
67.
S.
Lifson
and
J. L.
Jackson
,
J. Chem. Phys.
36
,
2410
(
1962
).
68.
S.
Martens
,
G.
Schmid
,
L.
Schimansky-Geier
, and
P.
Hänggi
,
Chaos
21
,
047518
(
2011
).
69.
S.
Martens
,
J. Chem. Phys.
145
,
016101
(
2016
).
70.
R.
Luther
,
Z. Elektrochem.
12
,
596
(
1906
).
71.
P.
Kalinay
and
J. K.
Percus
,
Phys. Rev. E
74
,
041203
(
2006
).
72.
K. D.
Dorfman
and
E.
Yariv
,
J. Chem. Phys.
141
,
044118
(
2014
).

Supplementary Material

You do not currently have access to this content.