We introduce a geometric integrator for molecular dynamics simulations of physical systems in the canonical ensemble that preserves the invariant distribution in equations arising from the density dynamics algorithm, with any possible type of thermostat. Our integrator thus constitutes a unified framework that allows the study and comparison of different thermostats and of their influence on the equilibrium and non-equilibrium (thermo-)dynamic properties of a system. To show the validity and the generality of the integrator, we implement it with a second-order, time-reversible method and apply it to the simulation of a Lennard-Jones system with three different thermostats, obtaining good conservation of the geometrical properties and recovering the expected thermodynamic results. Moreover, to show the advantage of our geometric integrator over a non-geometric one, we compare the results with those obtained by using the non-geometric Gear integrator, which is frequently used to perform simulations in the canonical ensemble. The non-geometric integrator induces a drift in the invariant quantity, while our integrator has no such drift, thus ensuring that the system is effectively sampling the correct ensemble.

1.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
1989
).
2.
D. C.
Rapaport
,
The Art of Molecular Dynamics Simulation
(
Cambridge University Press
,
2004
).
3.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations: From Algorithms to Applications
(
Academic Press
,
1996
).
4.
M. E.
Tuckerman
,
Statistical Mechanics: Theory and Molecular Simulation
,
Oxford Graduate Texts
(
Oxford University Press
,
Oxford
,
2010
).
5.
B.
Leimkuhler
and
C.
Matthews
,
Molecular Dynamics: With Deterministic and Stochastic Numerical Methods
(
Springer
,
2015
), Vol.
39
.
6.
D. J.
Evans
and
B. L.
Holian
, “
The Nosé-Hoover thermostat
,”
J. Chem. Phys.
83
(
8
),
4069
(
1985
).
7.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
(
3
),
1695
(
1985
).
8.
J.
Jellinek
and
R. S.
Berry
, “
Generalization of Nosé’s isothermal molecular dynamics
,”
Phys. Rev. A
38
(
6
),
3069
(
1988
).
9.
J.
Jellinek
, “
Dynamics for nonconservative systems: Ergodicity beyond the microcanonical ensemble
,”
J. Phys. Chem.
92
(
11
),
3163
3173
(
1988
).
10.
D.
Kusnezov
,
A.
Bulgac
, and
W.
Bauer
, “
Canonical ensembles from chaos
,”
Ann. Phys.
204
(
1
),
155
185
(
1990
).
11.
I.
Fukuda
and
H.
Nakamura
, “
Tsallis dynamics using the Nosé-Hoover approach
,”
Phys. Rev. E
65
(
2
),
026105
(
2002
).
12.
A.
Bravetti
and
D.
Tapias
, “
Thermostat algorithm for generating target ensembles
,”
Phys. Rev. E
93
,
022139
(
2016
).
13.
A.
Bravetti
,
H.
Cruz
, and
D.
Tapias
, “Contact Hamiltonian mechanics,” preprint arXiv:1604.08266 (2016).
14.
G. S.
Ezra
, “
Reversible measure-preserving integrators for non-Hamiltonian systems
,”
J. Chem. Phys.
125
(
3
),
034104
(
2006
).
15.
R. I.
McLachlan
and
G. R. W.
Quispel
, “
Splitting methods
,”
Acta Numer.
11
,
341
434
(
2002
).
16.
R. I.
McLachlan
and
G. R. W.
Quispel
, “
Geometric integrators for ODEs
,”
J. Phys. A: Math. Gen.
39
(
19
),
5251
(
2006
).
17.
E.
Hairer
,
C.
Lubich
, and
G.
Wanner
,
Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
(
Springer Science & Business Media
,
2006
), Vol.
31
.
18.
I.
Fukuda
and
H.
Nakamura
, “
Construction of an extended invariant for an arbitrary ordinary differential equation with its development in a numerical integration algorithm
,”
Phys. Rev. E
73
(
2
),
026703
(
2006
).
19.
R. J.
Sadus
,
Molecular Simulation of Fluids: Theory, Algorithms, and Object-Orientation
(
Elsevier
,
2002
).
20.
H.
Ishida
and
A.
Kidera
, “
Constant temperature molecular dynamics of a protein in water by high-order decomposition of the Liouville operator
,”
J. Chem. Phys.
109
(
8
),
3276
3284
(
1998
).
21.
H.
Okumura
,
S. G.
Itoh
,
A. M.
Ito
,
H.
Nakamura
, and
T.
Fukushima
, “
Manifold correction method for the Nosé–Hoover and Nosé–Poincare molecular dynamics simulations
,”
J. Phys. Soc. Jpn.
83
(
2
),
024003
(
2014
).
22.
K.
Cho
and
J.
Joannopoulos
, “
Ergodicity and dynamical properties of constant-temperature molecular dynamics
,”
Phys. Rev. A
45
(
10
),
7089
(
1992
).
23.
H.
Watanabe
and
H.
Kobayashi
, “
Ergodicity of a thermostat family of the Nosé-Hoover type
,”
Phys. Rev. E
75
(
4
),
040102
(
2007
).
24.
F.
Legoll
,
M.
Luskin
, and
R.
Moeckel
, “
Non-ergodicity of the Nosé-Hoover thermostatted harmonic oscillator
,”
Arch. Ration. Mech. Anal.
184
(
3
),
449
463
(
2007
).
25.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
, “
Nosé-Hoover chains: The canonical ensemble via continuous dynamics
,”
J. Chem. Phys.
97
(
4
),
2635
2643
(
1992
).
26.
A.
Sergi
and
M.
Ferrario
, “
Non-Hamiltonian equations of motion with a conserved energy
,”
Phys. Rev. E
64
(
5
),
056125
(
2001
).
27.
A.
Sergi
, “
Non-Hamiltonian equilibrium statistical mechanics
,”
Phys. Rev. E
67
(
2
),
021101
(
2003
).
28.

The situation is more delicate when the rescaling is due to a scalar function (see, e.g., Refs. 9 and 36). However, one can prove that the average results coincide provided one uses the correct rescaled measure.36 

29.
M. E.
Tuckerman
,
Y.
Liu
,
G.
Ciccotti
, and
G. J.
Martyna
, “
Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems
,”
J. Chem. Phys.
115
(
4
),
1678
1702
(
2001
).
30.
R. I.
McLachlan
, “
On the numerical integration of ordinary differential equations by symmetric composition methods
,”
SIAM J. Sci. Comput.
16
(
1
),
151
168
(
1995
).
32.
S.
Nadarajah
, “
A generalized normal distribution
,”
J. Appl. Stat.
32
(
7
),
685
694
(
2005
).
33.

The use of periodic conditions introduces three additional conserved quantities, the components of the total linear momentum. By considering an initial condition with vanishing linear momentum, we may continue using the DD equations with the corrected number of degrees of freedom ñ=n3. For a discussion concerning the Nosé–Hoover case, see Refs. 37 and 38.

34.
See http://webbook.nist.gov/chemistry/fluid/ for NIST standard reference database.
35.
G.
Valenzuela
,
J.
Saavedra
,
R.
Rozas
, and
P.
Toledo
, “
Analysis of energy and friction coefficient fluctuations of a Lennard-Jones liquid coupled to the Nosé-Hoover thermostat
,”
Mol. Sim.
41
(
7
),
521
530
(
2015
).
36.
I.
Fukuda
and
K.
Moritsugu
, “
Double density dynamics: Realizing a joint distribution of a physical system and a parameter system
,”
J. Phys. A: Math. Theor.
48
(
45
),
455001
(
2015
).
37.
S.
Melchionna
, “
Constrained systems and statistical distribution
,”
Phys. Rev. E
61
(
6
),
6165
(
2000
).
38.
K.
Cho
,
J. D.
Joannopoulos
, and
L.
Kleinman
, “
Constant-temperature molecular dynamics with momentum conservation
,”
Phys. Rev. E
47
,
3145
3151
(
1993
).
You do not currently have access to this content.