When at equilibrium, large-scale systems obey thermodynamics because they have microscopic configurations that are typical. “Typical” states are a fraction of those possible with the majority of the probability. A more precise definition of typical states underlies the transmission, coding, and compression of information. However, this definition does not apply to natural systems that are transiently away from equilibrium. Here, we introduce a variational measure of typicality and apply it to atomistic simulations of a model for hydrogen oxidation. While a gaseous mixture of hydrogen and oxygen combusts, reactant molecules transform through a variety of ephemeral species en route to the product, water. Out of the exponentially growing number of possible sequences of chemical species, we find that greater than 95% of the probability concentrates in less than 1% of the possible sequences. Overall, these results extend the notion of typicality across the nonequilibrium regime and suggest that typical sequences are a route to learning mechanisms from experimental measurements. They also open up the possibility of constructing ensembles for computing the macroscopic observables of systems out of equilibrium.

1.
J. L.
Lebowitz
, “
Macroscopic laws, microscopic dynamics, time’s arrow and Boltzmann’s entropy
,”
Phys. A
194
(
1
),
1
27
(
1993
).
2.
S. J.
Klippenstein
,
V. S.
Pande
, and
D. G.
Truhlar
, “
Chemical kinetics and mechanisms of complex systems: A perspective on recent theoretical advances
,”
J. Am. Chem. Soc.
136
(
2
),
528
546
(
2014
).
3.
V. V.
Lissianski
,
V. M.
Zamansky
, and
W. C.
Gardiner
, Jr.
,
Gas-Phase Combustion Chemistry
, 2nd ed. (
Springer-Verlag
,
2004
).
4.
B. A.
Grzybowski
,
C. E.
Wilmer
,
J.
Kim
,
K. P.
Browne
, and
K. J. M.
Bishop
, “
Self-assembly: From crystals to cells
,”
Soft Matter
5
(
6
),
1110
1128
(
2009
).
5.
M.
Alaghemandi
and
J. R.
Green
, “
Reactive symbol sequences for a model of hydrogen combustion
,”
Phys. Chem. Chem. Phys.
18
(
4
),
2810
2817
(
2016
).
6.
I.
Glassman
and
R. A.
Yetter
,
Combustion
, 4th ed. (
Elsevier, Inc.
,
USA
,
2008
).
7.
R.
Van de Vijver
,
N. M.
Vandewiele
,
P. L.
Bhoorasingh
,
B. L.
Slakman
,
F.
Seyedzadeh Khanshan
,
H.-H.
Carstensen
,
M. F.
Reyniers
,
G. B.
Marin
,
R. H.
West
, and
K. M.
Van Geem
, “
Automatic mechanism and kinetic model generation for gas- and solution-phase processes: A perspective on best practices, recent advances, and future challenges
,”
Int. J. Chem. Kinet.
47
(
4
),
199
231
(
2015
).
8.
M. P.
Burke
,
M.
Chaos
,
Y.
Ju
,
F. L.
Dryer
, and
S. J.
Klippenstein
, “
Comprehensive H2/O2 kinetic model for high-pressure combustion
,”
Int. J. Chem. Kinet.
44
(
7
),
444
474
(
2012
).
9.
S. R.
Turns
,
An Introduction to Combustion: Concepts and Applications
, 3rd ed. (
McGraw-Hill, Inc.
,
2011
).
10.
F. A.
Williams
, “
Detailed and reduced chemistry for hydrogen autoignition
,”
J. Loss Prev. Process Ind.
21
(
2
),
131
135
(
2008
).
11.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD–visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
12.
C.
Jarzynski
, “
Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale
,”
Annu. Rev. Condens. Matter Phys.
2
,
329
351
(
2011
).
13.
P. I.
Hurtado
,
C.
Pérez-Espigares
,
J. J.
del Pozo
, and
P. L.
Garrido
, “
Symmetries in fluctuations far from equilibrium
,”
Proc. Natl. Acad. Sci. U. S. A.
108
(
19
),
7704
7709
(
2011
).
14.
H.
Touchette
, “
The large deviation approach to statistical mechanics
,”
Phys. Rep.
478
(
13
),
1
69
(
2009
).
15.
T. M.
Cover
and
J. A.
Thomas
,
Elements of Information Theory
(
Wiley
,
2006
), Vol.
2
.
16.
C. E.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
623
656
(
1948
).
17.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
2001
).
18.
S. B.
Kylasa
,
H. M.
Aktulga
, and
A. Y.
Grama
, “
PuReMD-GPU: A reactive molecular dynamics simulation package for GPUs
,”
J. Comput. Phys.
272
,
343
359
(
2014
).
19.
S.
Agrawalla
and
A. C. T.
van Duin
, “
Development and application of a ReaxFF reactive force field for hydrogen combustion
,”
J. Phys. Chem. A
115
(
6
),
960
972
(
2011
).
20.
T.
Cheng
,
A.
Jaramillo-Botero
,
W. A.
Goddard
III
, and
H.
Sun
, “
Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion
,”
J. Am. Chem. Soc.
136
(
26
),
9434
9442
(
2014
).
21.
K.
Chenoweth
,
A. C. T.
van Duin
, and
W. A.
Goddard
III
, “
ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation
,”
J. Phys. Chem. A
112
(
5
),
1040
1053
(
2008
).
22.
J. R.
Gord
,
T. R.
Meyer
, and
S.
Roy
, “
Applications of ultrafast lasers for optical measurements in combusting flows
,”
Annu. Rev. Anal. Chem.
1
,
663
687
(
2008
).
23.
J. I.
Steinfeld
,
J. S.
Francisco
, and
W. L.
Hase
,
Chemical Kinetics and Dynamics
(
Prentice Hall, Inc.
,
1989
).
24.
A. N.
Kolmogorov
, “
Entropy per unit time as a metric invariant of automorphism
,”
Dokl. Akad. Nauk SSSR
124
,
754
755
(
1959
).
25.
Ya. G.
Sinai
, “
On the concept of entropy of a dynamical system
,”
Dokl. Akad. Nauk SSSR
124
,
768
771
(
1959
).
26.
P.
Gaspard
,
Chaos, Scattering, and Statistical Mechanics
(
Cambridge University Press
,
1998
).
27.
J. R.
Dorfman
,
An Introduction to Chaos in Nonequilibrium Statistical Mechanics
(
Cambridge University Press
,
1999
).
28.
J. R.
Green
,
A. B.
Costa
,
B. A.
Grzybowski
, and
I.
Szleifer
, “
Relationship between dynamical entropy and energy dissipation far from thermodynamic equilibrium
,”
Proc. Natl. Acad. Sci. U. S. A.
110
(
41
),
16339
16343
(
2013
).
29.
K.
Chung
,
H.
Lam
,
Z.
Liu
, and
M.
Mitzenmacher
, “
Chernoff-Hoeffding bounds for Markov chains: Generalized and simplified
,” in
Symposium on Theoretical Aspects of Computer Science
(
Schloss Dagstuhl Wadern
,
2012
), pp.
124
134
.
30.
A. D.
Healy
, “
Randomness-efficient sampling within NC1
,”
Comput. Complexity
17
,
3
37
(
2008
).
31.
C. F.
Van Loan
, “
The ubiquitous Kronecker product
,”
J. Comput. Appl. Math.
123
,
85
100
(
2000
).
32.
C. A.
León
and
F.
Perron
, “
Optimal Hoeffding bounds for discrete reversible Markov chains
,”
Ann. Appl. Probab.
14
,
958
970
(
2004
).
33.
P.
Lezaud
, “
Chernoff-type bound for finite Markov chains
,”
Ann. Appl. Probab.
8
,
849
867
(
1998
).
34.
J. P.
Crutchfield
, “
Between order and chaos
,”
Nat. Phys.
8
,
17
24
(
2011
).
35.
T.
Nemoto
and
S.
Sasa
, “
Computation of large deviation statistics via iterative measurement-and-feedback procedure
,”
Phys. Rev. Lett.
112
(
9
),
090602
(
2014
).
36.
J.
Tailleur
and
J.
Kurchan
, “
Probing rare physical trajectories with Lyapunov weighted dynamics
,”
Nat. Phys.
3
(
3
),
1745
2473
(
2007
).
37.
C.
Jarzynski
, “
Diverse phenomena, common themes
,”
Nat. Phys.
11
,
105
107
(
2015
).

Supplementary Material

You do not currently have access to this content.