Adsorption of flue gases by single-wall carbon nanotubes (SWCNT) has been studied by means of Monte Carlo simulations. The flue gas is modeled as a ternary mixture of N2, CO2, and O2, emulating realistic compositions of the emissions from power plants. The adsorbed flue gas is in equilibrium with a bulk gas characterized by temperature T, pressure p, and mixture composition. We have considered different SWCNTs with different chiralities and diameters in a range between 7 and 20 Å. Our results show that the CO2 adsorption properties depend mainly on the bulk flue gas thermodynamic conditions and the SWCNT diameter. Narrow SWCNTs with diameter around 7 Å show high CO2 adsorption capacity and selectivity, but they decrease abruptly as the SWCNT diameter is increased. For wide SWCNT, CO2 adsorption capacity and selectivity, much smaller in value than for the narrow case, decrease mildly with the SWCNT diameter. In the intermediate range of SWCNT diameters, the CO2 adsorption properties may show a peculiar behavior, which depend strongly on the bulk flue gas conditions. Thus, for high bulk CO2 concentrations and low temperatures, the CO2 adsorption capacity remains high in a wide range of SWCNT diameters, although the corresponding selectivity is moderate. We correlate these findings with the microscopic structure of the adsorbed gas inside the SWCNTs.

1.
Intergovernmental Panel on Climate Change (IPCC)
,
Climate Change 2013: The Physical Science Basis
(
Cambridge University Press
,
Cambridge
,
2013
).
2.
J.
Hansen
,
P.
Kharecha
,
M.
Sato
,
V.
Masson-Delmotte
,
F.
Ackerman
,
D. J.
Beerling
,
P. J.
Hearty
,
O.
Hoegh-Guldberg
,
S. L.
Hsu
,
C.
Parmesan
,
J.
Rockstrom
,
E. J.
Rohling
,
J.
Sachs
,
P.
Smith
,
K.
Steffen
,
L.
Van Susteren
,
K.
von Schuckmann
, and
J. C.
Zachos
,
PLoS One
8
,
e81648
(
2013
).
3.
M.
Mikkelsen
,
M.
Jorgensen
, and
F. C.
Krebs
,
Energy Environ. Sci.
3
,
43
(
2010
).
4.
Intergovernmental Panel on Climate Change (IPCC)
,
Special Report on Carbon Dioxide Capture and Storage
(
Cambridge University Press
,
Cambridge
,
2005
).
5.
S.
Chakravarti
,
A.
Gupta
, and
B.
Hunek
, “Advanced technology for the capture of carbon dioxide from flue gases,” Proceedings of the First National Conference on Carbon Sequestration, Washington, DC, 2001.
6.
F. S.
Su
,
C. S.
Lu
,
W. F.
Cnen
,
H. L.
Bai
, and
J. F.
Hwang
,
Sci. Total Environ.
407
,
3017
(
2009
).
7.
S.
Pacala
and
R.
Socolow
,
Science
305
,
968
(
2004
).
8.
P.
Jaramillo
,
W. M.
Griffin
, and
S. T.
McCoy
,
Environ. Sci. Technol.
43
,
8027
(
2009
).
9.
I. M.
Power
,
A. L.
Harrison
,
G. M.
Dipple
,
S. A.
Wilson
,
P. B.
Kelemen
,
M.
Hitch
, and
G.
Southam
,
Rev. Mineral. Geochem.
77
,
305
(
2013
).
10.
V.
Morales-Florez
,
A.
Santos
, and
L.
Esquivias
,
J. Sol-Gel Sci. Technol.
59
,
417
(
2011
).
11.
V.
Morales-Florez
,
A.
Santos
,
I.
Romero-Hermida
, and
L.
Esquivias
,
Chem. Eng. J.
265
,
194
(
2015
).
12.
X. Q.
Lu
,
D. L.
Jin
,
S. X.
Wei
,
Z. J.
Wang
,
C. H.
An
, and
W. Y.
Guo
,
J. Mater. Chem. A
3
,
12118
(
2015
).
13.
W. H.
Gao
,
D.
Butler
, and
D. L.
Tomasko
,
Langmuir
20
,
8083
(
2004
).
14.
R. V.
Siriwardane
,
M. S.
Shen
, and
E. P.
Fisher
,
Energy Fuels
19
,
1153
(
2005
).
15.
R. V.
Siriwardane
,
M. S.
Shen
,
E. P.
Fisher
, and
J. A.
Poston
,
Energy Fuels
15
,
279
(
2001
).
16.
J.
Przepiórski
,
M.
Skrodzewicz
, and
A. W.
Morawski
,
Appl. Surf. Sci.
225
,
235
(
2004
).
17.
J. R.
Li
,
Y. G.
Ma
,
M. C.
McCarthy
,
J.
Sculley
,
J. M.
Yu
,
H. K.
Jeong
,
P. B.
Balbuena
, and
H. C.
Zhou
,
Coord. Chem. Rev.
255
,
1791
(
2011
).
18.
O.
Shekhah
,
Y.
Belmabkhout
,
Z. J.
Chen
,
V.
Guillerm
,
A.
Cairns
,
K.
Adil
, and
M.
Eddaoudi
,
Nat. Commun.
5
,
4228
(
2014
).
19.
M.
Cinke
,
J.
Li
,
C. W.
Bauschlicher
, Jr.
,
A.
Ricca
, and
M.
Meyyapan
,
Chem. Phys. Lett.
376
,
761
(
2003
).
20.
P.
Kowalczyk
,
S.
Furmaniak
,
P. A.
Gauden
, and
A. P.
Terzyk
,
J. Phys. Chem. C
114
,
21465
(
2010
).
21.
C. Y.
Lu
,
H. L.
Bai
,
B.
Wu
,
F. S.
Su
, and
J. F.
Hwang
,
Energy Fuels
22
,
3050
(
2008
).
22.
S. C.
Hsu
,
C. S.
Lu
,
F. S.
Su
,
W. T.
Zeng
, and
W. F.
Chen
,
Chem. Eng. Sci.
65
,
1354
(
2010
).
23.
M.
Mittal
and
A.
Kumar
,
Sens. Actuators, B
203
,
349
(
2014
).
24.
A.
Star
,
T. R.
Han
,
V.
Joshi
,
J. C. P.
Gabriel
, and
G.
Grüner
,
Adv. Mater.
16
,
2049
(
2004
).
25.
J. R.
Sanchez-Valencia
,
T.
Dienel
,
O.
Gröning
,
I.
Shorubalko
,
A.
Mueller
,
M.
Jansen
,
K.
Amsharov
,
P.
Ruffieux
, and
R.
Fasel
,
Nature
512
,
61
(
2014
).
26.
J.
Jiang
and
S. I.
Sandler
,
Langmuir
19
,
5936
(
2003
).
27.
J.
Jiang
and
S. I.
Sandler
,
J. Am. Chem. Soc.
127
,
11989
(
2005
).
28.
A. I.
Skoulidas
,
D. S.
Sholl
, and
J. K.
Johnson
,
J. Chem. Phys.
124
,
054708
(
2006
).
29.
G.
Arora
and
S. I.
Sandler
,
Fluid Phase Equilib.
259
,
3
(
2007
).
30.
L. L.
Huang
,
L. Z.
Zhang
,
Q.
Shao
,
L. H.
Lu
,
X. H.
Lu
,
S. Y.
Jiang
, and
W. F.
Shen
,
J. Phys. Chem. C
111
,
11912
(
2007
).
31.
G. P.
Lithoxoos
,
A.
Labropoulos
,
L. D.
Peristeras
,
N.
Kanellopoulos
,
J.
Samios
, and
amd I. G.
Economou
,
J. Supercrit. Fluids
55
,
510
(
2010
).
32.
X. A.
Peng
,
J.
Zhou
,
W. C.
Wang
, and
D. P.
Cao
,
Carbon
48
,
3760
(
2010
).
33.
S. S.
Razavi
,
S. M.
Hashemianzadeh
, and
H.
Karimi
,
J. Mol. Model.
17
,
1163
(
2011
).
34.
S.
Ban
and
C.
Huang
,
J. Membr. Sci.
417
,
113
(
2012
).
35.
W. H.
Zhao
,
B.
Shang
,
S. P.
Du
,
L. F.
Yuan
,
J.
Yang
, and
X. C.
Zeng
,
J. Chem. Phys.
137
,
034501
(
2012
).
36.
P.
Kowalczyk
,
Phys. Chem. Chem. Phys.
14
,
2784
(
2012
).
37.
L.
Liu
and
S. K.
Bhatia
,
J. Phys. Chem. C
117
,
13479
(
2013
).
38.
M.
Rahimi
,
J. K.
Singh
,
D. J.
Babu
,
J. J.
Schneider
, and
F.
Müller-Plathe
,
J. Phys. Chem. C
117
,
13492
(
2013
).
39.
L. H.
Lu
,
S. S.
Wang
,
E. A.
Müller
,
W.
Cao
,
Y. D.
Zhu
,
X. H.
Lu
, and
G.
Jackson
,
Fluid Phase Equilib.
362
,
227
(
2014
).
40.
M.
Rahimi
,
D. J.
Babu
,
J. K.
Singh
,
Y. B.
Yang
,
J. J.
Schneider
, and
F.
Müller-Plathe
,
J. Chem. Phys.
143
,
124701
(
2015
).
41.
M.
Rahimi
,
J. K.
Singh
, and
F.
Müller-Plathe
,
Phys. Chem. Chem. Phys.
18
,
4112
(
2016
).
42.
J. J.
Zhao
,
A.
Buldum
,
J.
Han
, and
J. P.
Lu
,
Nanotechnology
13
,
195
(
2002
).
43.
D.
Hedman
,
H. R.
Barzegar
,
A.
Rosén
,
T.
Wågberg
, and
J. A.
Larsson
,
Sci. Rep.
5
,
16850
(
2015
).
44.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
).
45.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation. From Algorithms to Applications
, 2nd ed. (
Academic Press
,
London
,
2002
).
46.
J. J.
Potoff
and
J. I.
Siepmann
,
AIChE J.
47
,
1676
(
2001
).
47.
N.
Hansen
,
F. A. B.
Agbor
, and
F. J.
Keil
,
Fluid Phase Equilib.
259
,
180
(
2007
).
48.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
R.
Saito
,
Carbon
33
,
883
(
1995
).
49.
A. V.
Vernov
and
W. A.
Steele
,
Langmuir
2
,
219
(
1986
).
50.
M. J.
Bojan
and
W. A.
Steele
,
Langmuir
3
,
1123
(
1987
).
51.
E. J.
Bottani
,
I. M. K.
Ismail
,
M. J.
Bojan
, and
W. A.
Steele
,
Langmuir
10
,
3805
(
1994
).
52.
53.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
).
54.
F.
Karavias
and
A. L.
Myers
,
Langmuir
7
,
3118
(
1991
).
You do not currently have access to this content.