We investigate the effect of interaction range on the phase behaviour of Janus particles with a Kern-Frenkel potential. Specifically, we study interaction ranges Δ = 0.1σ, 0.3σ, 0.4σ, 0.5σ with σ the particle diameter, and use variable box shape simulations to predict crystal structures. We found that changing the interaction range beyond 0.2σ drastically increases the variety of possible crystal structures. In addition to close-packed structures, we find body-centered tetragonal and AA-stacked hexagonal crystals, as well as several lamellar crystals. For long interaction ranges and low temperatures, we also observe an extremely large number of metastable structures which compete with the thermodynamically stable ones. These competing structures hinder the detection of the lowest-energy crystal structures, and are also likely to interfere with the spontaneous formation of the ground-state structure. Finally, we determine the gas-liquid coexistence curves for several interaction ranges, and observe that these are metastable with respect to crystallization.

1.
G.-R.
Yi
,
D. J.
Pine
, and
S.
Sacanna
,
J. Phys.: Condens. Matter
25
,
193101
(
2013
).
2.
A.
Walther
and
A. H. E.
Müller
,
Chem. Rev.
113
,
5194
(
2013
).
3.
B. S.
Jiang
,
Q.
Chen
,
M.
Tripathy
,
E.
Luijten
,
K.
Schweizer
, and
S.
Granick
,
Adv. Mater.
22
,
1060
(
2010
).
4.
S.
Jiang
and
S.
Granick
,
Janus Particle Synthesis, Self-Assembly and Applications
(
Royal Society of Chemistry
,
2012
).
5.
A.
Walther
and
A. H. E.
Muller
,
Soft Matter
4
,
663
(
2008
).
6.
A. B.
Pawar
and
I.
Kretzschmar
,
Macromol. Rapid Commun.
31
,
150
(
2010
).
7.
Q.
Chen
,
S. C.
Bae
, and
S.
Granick
,
Nature
469
,
381
(
2011
).
8.
Y.
Iwashita
and
Y.
Kimura
,
Soft Matter
9
,
10694
(
2013
).
9.
F.
Romano
and
F.
Sciortino
,
Nat. Mater.
10
,
171
(
2011
).
10.
E.
Bianchi
,
R.
Blaak
, and
C. N.
Likos
,
Phys. Chem. Chem. Phys.
13
,
6397
(
2011
).
11.
S.
Roldán-Vargas
,
F.
Smallenburg
,
W.
Kob
, and
F.
Sciortino
,
Sci. Rep.
3
(
2013
).
12.
J.
Zhang
,
E.
Luijten
, and
S.
Granick
,
Annu. Rev. Phys. Chem.
66
,
581
(
2015
).
13.
F.
Romano
,
E.
Sanz
, and
F.
Sciortino
,
J. Chem. Phys.
132
,
184501
(
2010
).
14.
T.
Vissers
,
Z.
Preisler
,
F.
Smallenburg
,
M.
Dijkstra
, and
F.
Sciortino
,
J. Chem. Phys.
138
,
164505
(
2013
).
15.
F.
Romano
and
F.
Sciortino
,
Nat. Commun.
3
,
975
(
2012
).
16.
F.
Romano
,
E.
Sanz
,
P.
Tartaglia
, and
F.
Sciortino
,
J. Phys.: Condens. Matter
24
,
064113
(
2012
).
17.
A.
Giacometti
,
F.
Lado
,
J.
Largo
,
G.
Pastore
, and
F.
Sciortino
,
J. Chem. Phys.
132
,
174110
(
2010
).
18.
E.
Bianchi
,
J.
Largo
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
,
Phys. Rev. Lett.
97
,
168301
(
2006
).
19.
F.
Smallenburg
and
F.
Sciortino
,
Nat. Phys.
9
,
554
(
2013
).
20.
E. G.
Noya
,
C.
Vega
,
J. P. K.
Doye
, and
A. A.
Louis
,
J. Chem. Phys.
132
,
234511
(
2010
).
21.
F.
Romano
,
E.
Sanz
, and
F.
Sciortino
,
J. Phys. Chem. B
113
,
15133
(
2009
).
22.
S. M.
Ilett
,
A.
Orrock
,
W.
Poon
, and
P.
Pusey
,
Phys. Rev. E
51
,
1344
(
1995
).
23.
M.
Hagen
and
D.
Frenkel
,
J. Chem. Phys.
101
,
4093
(
1994
).
24.
H.
Liu
,
S.
Garde
, and
S.
Kumar
,
J. Chem. Phys.
123
,
174505
(
2005
).
25.
D. L.
Pagan
and
J. D.
Gunton
,
J. Chem. Phys.
122
,
184515
(
2005
).
26.
S.
Jiang
,
M. J.
Schultz
,
Q.
Chen
,
J. S.
Moore
, and
S.
Granick
,
Langmuir
24
,
10073
(
2008
).
27.
L.
Hong
,
S.
Jiang
, and
S.
Granick
,
Langmuir
22
,
9495
(
2006
).
28.
G.
Munaò
,
Z.
Preisler
,
T.
Vissers
,
F.
Smallenburg
, and
F.
Sciortino
,
Soft Matter
9
,
2652
(
2013
).
29.
Z.
Preisler
,
T.
Vissers
,
F.
Smallenburg
,
G.
Munaò
, and
F.
Sciortino
,
J. Phys. Chem. B
117
,
9540
(
2013
).
30.
T.
Vissers
,
F.
Smallenburg
,
G.
Munaò
,
Z.
Preisler
, and
F.
Sciortino
,
J. Chem. Phys.
140
,
144902
(
2014
).
31.
Z.
Preisler
,
T.
Vissers
,
G.
Munao
,
F.
Smallenburg
, and
F.
Sciortino
,
Soft Matter
10
,
5121
(
2014
).
32.
W.
Bol
,
Mol. Phys.
45
,
605
(
1982
).
33.
N.
Kern
and
D.
Frenkel
,
J. Chem. Phys.
118
,
9882
(
2003
).
34.
M.
Dijkstra
,
R.
van Roij
, and
R.
Evans
,
Phys. Rev. Lett.
82
,
117
(
1999
).
35.
R.
Roth
,
R.
Evans
, and
S.
Dietrich
,
Phys. Rev. E
62
,
5360
(
2000
).
36.
C. N.
Likos
,
Phys. Rep.
348
,
267
(
2001
).
37.
C.
Vega
,
E.
Sanz
,
J. L. F.
Abascal
, and
E. G.
Noya
,
J. Phys.: Condens. Matter
20
,
153101
(
2008
).
38.
L.
Filion
,
M.
Marechal
,
B.
van Oorschot
,
D.
Pelt
,
F.
Smallenburg
, and
M.
Dijkstra
,
Phys. Rev. Lett.
103
,
188302
(
2009
).
39.
E.
Bianchi
,
G. U.
Doppelbauer
,
L.
Filion
,
M.
Dijkstra
, and
G.
Kahl
,
J. Chem. Phys.
136
,
214102
(
2012
).
40.
D. A.
Kofke
,
J. Chem. Phys.
98
,
4149
(
1993
).
41.
F.
Sciortino
,
A.
Giacometti
, and
G.
Pastore
,
Phys. Chem. Chem. Phys.
12
,
11869
(
2010
).
42.
Q.
Chen
,
E.
Diesel
,
J. K.
Whitmer
,
S. C.
Bae
,
E.
Luijten
, and
S.
Granick
,
J. Am. Chem. Soc.
133
,
7725
(
2011
).
43.
Q.
Chen
,
S. C.
Bae
, and
S.
Granick
,
J. Am. Chem. Soc.
134
,
11080
(
2012
).
44.
Y.
Iwashita
and
Y.
Kimura
,
Soft Matter
10
,
7170
(
2014
).
45.
F.
Sciortino
,
A.
Giacometti
, and
G.
Pastore
,
Phys. Rev. Lett.
103
,
237801
(
2009
).
46.
A. K.
Khandpur
,
S.
Foerster
,
F. S.
Bates
,
I. W.
Hamley
,
A. J.
Ryan
,
W.
Bras
,
K.
Almdal
, and
K.
Mortensen
,
Macromolecules
28
,
8796
(
1995
).
47.
J.
Hu
,
S.
Zhou
,
Y.
Sun
,
X.
Fang
, and
L.
Wu
,
Chem. Soc. Rev.
41
,
4356
(
2012
).
48.
T.
Higuchi
,
A.
Tajima
,
K.
Motoyoshi
,
H.
Yabu
, and
M.
Shimomura
,
Angew. Chem.
120
,
8164
(
2008
).
49.
D. J.
Beltran-Villegas
,
B. A.
Schultz
,
N. H.
Nguyen
,
S. C.
Glotzer
, and
R. G.
Larson
,
Soft Matter
10
,
4593
(
2014
).
50.
V.
Percec
,
D. A.
Wilson
,
P.
Leowanawat
,
C. J.
Wilson
,
A. D.
Hughes
,
M. S.
Kaucher
,
D. A.
Hammer
,
D. H.
Levine
,
A. J.
Kim
,
F. S.
Bates
 et al,
Science
328
,
1009
(
2010
).
You do not currently have access to this content.