Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

1.
A.
Warshel
and
M.
Karplus
,
J. Am. Chem. Soc.
94
,
5612
(
1972
).
2.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
3.
F.
Maseras
and
K.
Morokuma
,
J. Comput. Chem.
16
,
1170
(
1995
).
4.
H. M.
Senn
and
W.
Thiel
,
Angew. Chem., Int. Ed.
48
,
1198
(
2009
).
5.
A. S. P.
Gomes
and
C. R.
Jacob
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
108
,
222
(
2012
).
6.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
,
Chem. Rev.
112
,
632
(
2012
).
7.
F.
Libisch
,
C.
Huang
, and
E. A.
Carter
,
Acc. Chem. Res.
47
,
2768
(
2014
).
8.
T. A.
Wesolowski
,
S.
Shedge
, and
X.
Zhou
,
Chem. Rev.
115
,
5891
(
2015
).
9.
G.
Knizia
and
G. K.-L.
Chan
,
J. Chem. Theory Comput.
9
,
1428
(
2013
).
10.
X.
Assfeld
and
J. L.
Rivail
,
Chem. Phys. Lett.
263
,
100
(
1996
).
11.
D. M.
Philipp
and
R. A.
Friesner
,
J. Comput. Chem.
20
,
1468
(
1999
).
12.
J.
Pu
,
J.
Gao
, and
D. G.
Truhlar
,
J. Phys. Chem. A.
108
,
632
(
2004
).
13.
J.
Jung
,
C. H.
Choi
,
Y.
Sugita
, and
S.
Ten-no
,
J. Chem. Phys.
127
,
204102
(
2007
).
14.
J.
Jung
and
S.
Ten-no
,
Chem. Phys. Lett.
484
,
344
(
2010
).
15.
Q.
Sun
and
G. K.-L.
Chan
,
J. Chem. Theory Comput.
10
,
3784
(
2014
).
16.
G. G.
Ferenczy
,
J. Comput. Chem.
34
,
854
(
2013
).
17.
B.
Hégely
,
F.
Bogár
,
G. G.
Ferenczy
, and
M.
Kállay
,
Theor. Chem. Acc.
134
,
132
(
2015
).
18.
S.
Huzinaga
and
A. A.
Cantu
,
J. Chem. Phys.
55
,
5543
(
1971
).
19.
20.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
21.
J. D.
Goodpaster
,
N.
Ananth
,
F. R.
Manby
, and
T. F.
Miller
III
,
J. Chem. Phys.
133
,
084103
(
2010
).
22.
P.
Elliott
,
M. H.
Cohen
,
A.
Wasserman
, and
K.
Burke
,
J. Chem. Theory Comput.
5
,
827
(
2009
).
23.
P.
Elliott
,
K.
Burke
,
M. H.
Cohen
, and
A.
Wasserman
,
Phys. Rev. A
82
,
024501
(
2010
).
24.
S.
Fux
,
C. R.
Jacob
,
J.
Neugebauer
,
L.
Visscher
, and
M.
Reiher
,
J. Chem. Phys.
132
,
164101
(
2010
).
25.
C.
Huang
,
M.
Pavone
, and
E. A.
Carter
,
J. Chem. Phys.
134
,
154110
(
2011
).
26.
J. D.
Goodpaster
,
T. A.
Barnes
, and
T. F.
Miller
III
,
J. Chem. Phys.
134
,
164108
(
2011
).
27.
J.
Nafziger
,
Q.
Wu
, and
A.
Wasserman
,
J. Chem. Phys.
135
,
234101
(
2011
).
28.
L.
Rajchel
,
P. S.
Żuchowski
,
M. M.
Szczȩśniak
, and
G.
Chałasiński
,
Chem. Phys. Lett.
486
,
160
(
2010
).
29.
F. R.
Manby
,
M.
Stella
,
J. D.
Goodpaster
, and
T. F.
Miller
III
,
J. Chem. Theory Comput.
8
,
2564
(
2012
).
30.
J. D.
Goodpaster
,
T. A.
Barnes
,
F. R.
Manby
, and
T. F.
Miller
III
,
J. Chem. Phys.
140
,
18A507
(
2014
).
31.
T. A.
Barnes
,
J. D.
Goodpaster
,
F. R.
Manby
, and
T. F.
Miller
III
,
J. Chem. Phys.
139
,
024103
(
2013
).
32.
S. J.
Bennie
,
M.
Stella
,
T. F.
Miller
III
, and
F. R.
Manby
,
J. Chem. Phys.
143
,
024105
(
2015
).
33.
L.
Seijo
and
Z.
Barandiaran
, “
The ab initio model potential method: A common strategy for effective core potential and embedded cluster calculations
'', in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
Singapore
,
1999
), Vol.
4
.
34.
J. C.
Phillips
and
L.
Kleinman
,
Phys. Rev.
116
,
287
(
1959
).
35.
M. E.
Fornace
,
J.
Lee
,
K.
Miyamoto
,
F. R.
Manby
, and
T. F.
Miller
III
,
J. Chem. Theory Comput.
11
,
568
(
2015
).
36.
37.
E.
Kapuy
,
Z.
Csépes
, and
C.
Kozmutza
,
Int. J. Quantum Chem.
23
,
981
(
1983
).
38.
W.
Förner
,
J.
Ladik
,
P.
Otto
, and
J.
Čížek
,
Chem. Phys.
97
,
251
(
1985
).
39.
C.
Hampel
and
H.-J.
Werner
,
J. Chem. Phys.
104
,
6286
(
1996
).
40.
M.
Schütz
,
J. Chem. Phys.
113
,
9986
(
2000
).
41.
C.
Riplinger
and
F.
Neese
,
J. Chem. Phys.
138
,
034106
(
2013
).
42.
43.
J.
Friedrich
and
M.
Dolg
,
J. Chem. Theory Comput.
5
,
287
(
2009
).
44.
S.
Li
,
J.
Ma
, and
Y.
Jiang
,
J. Comput. Chem.
23
,
237
(
2002
).
45.
M.
Ziółkowski
,
B.
Jansík
,
T.
Kjærgaard
, and
P.
Jørgensen
,
J. Chem. Phys.
133
,
014107
(
2010
).
46.
N.
Flocke
and
R. J.
Bartlett
,
J. Chem. Phys.
121
,
10935
(
2004
).
47.
Z.
Rolik
,
L.
Szegedy
,
I.
Ladjánszki
,
B.
Ladóczki
, and
M.
Kállay
,
J. Chem. Phys.
139
,
094105
(
2013
).
48.
S.
Li
,
J.
Shen
,
W.
Li
, and
Y.
Jiang
,
J. Chem. Phys.
125
,
074109
(
2006
).
49.
R. A.
Mata
,
H.-J.
Werner
, and
M.
Schütz
,
J. Chem. Phys.
128
,
144106
(
2008
).
50.
W.
Li
and
P.
Piecuch
,
J. Phys. Chem. A.
114
,
6721
(
2010
).
51.
Z.
Rolik
and
M.
Kállay
,
J. Chem. Phys.
135
,
104111
(
2011
).
52.
J. W.
Boughton
and
P.
Pulay
,
J. Comput. Chem.
14
,
736
(
1993
).
53.
See supplementary material at http://dx.doi.org/10.1063/1.4960177 for test calculations with the self-consistent localization-based approach discussed in Sec. II A, for the comparison of the projector-based embedding scheme and its Huzinaga-equation-based variant proposed in this work, and for the specification of the orbital partitionings.
54.
M.
Kállay
,
J. Chem. Phys.
142
,
204105
(
2015
).
55.
S.
Li
,
W.
Li
, and
J.
Ma
,
Chin. J. Chem.
21
,
1422
(
2003
).
56.
W.
Li
,
P.
Piecuch
,
J. R.
Gour
, and
S.
Li
,
J. Chem. Phys.
131
,
114109
(
2009
).
57.
K.
Rościszewski
,
K.
Doll
,
B.
Paulus
,
P.
Fulde
, and
H.
Stoll
,
Phys. Rev. B
57
,
14667
(
1998
).
58.
J.
Friedrich
and
K.
Walczak
,
J. Chem. Theory Comput.
9
,
408
(
2013
).
59.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
60.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
61.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
121
,
9793
(
2004
).
62.
H.
Eshuis
,
J. E.
Bates
, and
F.
Furche
,
Theor. Chem. Acc.
131
,
1084
(
2012
).
63.
A.
Grüneis
,
M.
Marsman
,
J.
Harl
,
L.
Schimka
, and
G.
Kresse
,
J. Chem. Phys.
131
,
154115
(
2009
).
64.
J.
Gauss
, in
Encyclopedia of Computational Chemistry
, edited by
P. R.
Schleyer
,
W. L.
Jorgensen
,
H. F.
Schaefer III
,
P. R.
Schreiner
, and
W.
Thiel
(
Wiley
,
New York
,
1998
), p.
615
.
65.
Mrcc, a quantum chemical program suite written by M. Kállay, Z. Rolik, J. Csontos, I. Ladjánszki, L. Szegedy, B. Ladóczki, G. Samu, K. Petrov, M. Farkas, P. Nagy, D. Mester, and B. Hégely. See also Ref. 47 as well as http://www.mrcc.hu/.
66.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
67.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
68.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
69.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
70.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
71.
F.
Weigend
,
J. Comput. Chem.
29
,
167
(
2008
).
72.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
73.
P. A. M.
Dirac
,
Proc. R. Soc. A
123
,
714
(
1929
).
74.
75.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
76.
A. D.
Becke
,
Phys. Rev. A.
38
,
3098
(
1988
).
77.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
78.
J.
Pipek
and
P.
Mezey
,
J. Chem. Phys.
90
,
4916
(
1989
).
79.
D. A.
Case
,
V.
Babin
,
J. T.
Berryman
,
R. M.
Betz
,
Q.
Cai
,
D. S.
Cerutti
,
T. E.
Cheatham
III
,
T. A.
Darden
,
R. E.
Duke
,
H.
Gohlke
,
A. W.
Goetz
,
S.
Gusarov
,
N.
Homeyer
,
P.
Janowski
,
J.
Kaus
,
I.
Kolossváry
,
A.
Kovalenko
,
T. S.
Lee
,
S.
LeGrand
,
T.
Luchko
,
R.
Luo
,
B.
Madej
,
K. M.
Merz
,
F.
Paesani
,
D. R.
Roe
,
A.
Roitberg
,
C.
Sagui
,
R.
Salomon-Ferrer
,
G.
Seabra
,
C. L.
Simmerling
,
W.
Smith
,
J.
Swails
,
R. C.
Walker
,
J.
Wang
,
R. M.
Wolf
,
X.
Wu
, and
P. A.
Kollman
, AMBER 14, University of California, San Francisco, 2014.
80.
R.
Salomon-Ferrer
,
D. A.
Case
, and
R. C.
Walker
,
WIREs: Comput. Mol. Sci.
3
,
198
(
2013
).
81.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
,
J. Comput. Chem.
25
,
1157
(
2004
).
82.
J.
Wang
,
W.
Wang
,
P. A.
Kollman
, and
D. A.
Case
,
J. Mol. Graphics Modell.
25
,
247
(
2006
).
83.
A.
Jakalian
,
B. L.
Bush
,
D. B.
Jack
, and
C. I.
Bayly
,
J. Comput. Chem.
21
,
132
(
2000
).
84.
A.
Jakalian
,
D. B.
Jack
, and
C. I.
Bayly
,
J. Comput. Chem.
23
,
1623
(
2002
).

Supplementary Material

You do not currently have access to this content.