Electron ionization of neat tungsten hexacarbonyl (W(CO)6) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO)6 clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO)n+ (0 ≤ n ≤ 6) and W2(CO)n+ (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO)n+ (0 ≤ n ≤ 3) and W2C(CO)n+ (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.

1.
I. J.
Luxmore
,
I. M.
Ross
,
A. G.
Cullis
,
P. W.
Fry
,
J.
Orr
, and
P. D.
Buckle
,
Thin Solid Films
515
,
6791
(
2007
).
2.
M.
Song
and
K.
Furuya
,
Sci. Technol. Adv. Mater.
9
,
023002
(
2008
).
3.
F.
Porrati
,
R.
Sachser
, and
M.
Huth
,
Nanotechnology
20
,
195301
(
2009
).
4.
I.
Sychugov
,
Y.
Nakayama
, and
K.
Mitsuishi
,
J. Phys. Chem. C
113
,
21516
(
2009
).
5.
H. W. P.
Koops
,
R.
Weiel
,
D. P.
Kern
, and
T. H.
Baum
,
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.
6
,
477
(
1988
).
6.
P. D.
Rack
,
S.
Randolph
,
Y.
Deng
,
J.
Fowlkes
,
Y.
Choi
, and
D. C.
Joy
,
Appl. Phys. Lett.
82
,
2326
(
2003
).
7.
J. J. L.
Mulders
,
L. M.
Belova
, and
A.
Riazanova
,
Nanotechnology
22
,
055302
(
2011
).
8.
I.
Utke
,
P.
Hoffmann
, and
J.
Melngailis
,
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.
26
,
1197
(
2008
).
9.
W. F.
van Dorp
and
C. W.
Hagen
,
J. Appl. Phys.
104
,
081301
(
2008
).
10.
W. F.
van Dorp
,
B.
van Someren
,
C. W.
Hagen
,
P.
Kruit
, and
P. A.
Crozier
,
Nano Lett.
5
,
1303
(
2005
).
11.
N.
Silvis-Cividjian
,
C. W.
Hagen
, and
P.
Kruit
,
J. Appl. Phys.
98
,
084905
(
2005
).
12.
S.
Engmann
,
M.
Stano
,
Š.
Matejčik
, and
O.
Ingólfsson
,
Phys. Chem. Chem. Phys.
14
,
14611
(
2012
).
13.
S.
Engmann
,
M.
Stano
,
Š.
Matejčik
, and
O.
Ingólfsson
,
Angew. Chem., Int. Ed.
50
,
9475
(
2011
).
14.
K.
Wnorowski
,
M.
Stano
,
W.
Barszczewska
,
A.
Jówko
, and
Š.
Matejčik
,
Int. J. Mass Spectrom.
314
,
42
(
2012
).
15.
K.
Wnorowski
,
M.
Stano
,
C.
Matias
,
S.
Denifl
,
W.
Barszczewska
, and
Š.
Matejčik
,
Rapid Commun. Mass Spectrom.
26
,
2093
(
2012
).
16.
O.
May
,
D.
Kubala
, and
M.
Allan
,
Phys. Chem. Chem. Phys.
14
,
2979
(
2012
).
17.
S. G.
Rosenberg
,
M.
Barclay
, and
D. H.
Fairbrother
,
Phys. Chem. Chem. Phys.
15
,
4002
(
2013
).
18.
R. M.
Thorman
,
T. P.
Ragesh Kumar
,
D. H.
Fairbrother
, and
O.
Ingólfsson
,
Beilstein J. Nanotechnol.
6
,
1904
1926
(
2015
).
19.
M.
Neustetter
,
A.
Mauracher
,
P.
Limão-Vieira
, and
S.
Denifl
,
Phys. Chem. Chem. Phys.
18
,
9893
9896
(
2016
).
20.
S.
Denifl
,
Eur. Phys. J.: Spec. Top.
222
,
2017
2033
(
2013
).
21.
O.
Echt
,
T. D.
Märk
, and
P.
Scheier
,
Handbook of Nanophysics Clusters and Fullerenes
(
CRC Press
,
2010
), Vol.
7
.
22.
D.
Almeida
,
D.
Kinzel
,
F. F.
da Silva
,
B.
Puschnigg
,
D.
Gschliesser
,
P.
Scheier
,
S.
Denifl
,
G.
García
,
L.
González
, and
P.
Limão-Vieira
,
Phys. Chem. Chem. Phys.
15
,
11431
(
2013
).
23.
G. H.
Wannier
,
Phys. Rev.
90
,
817
(
1953
).
24.
B.
Gstir
,
S.
Denifl
,
G.
Hanel
,
M.
Rümmele
,
T.
Fiegele
,
P.
Cicman
,
M.
Stano
,
S.
Matejcik
,
P.
Scheier
,
K.
Becker
,
A.
Stamatovic
, and
T. D.
Märk
,
J. Phys. B: At., Mol. Opt. Phys.
35
,
2993
(
2002
).
25.
S.
Denifl
,
V.
Vizcaino
,
T. D.
Märk
,
E.
Illenberger
, and
P.
Scheier
,
Phys. Chem. Chem. Phys.
12
,
5219
(
2010
).
26.
See www.nist.gov for an electron ionization mass spectrum of single tungsten hexacarbonyl.
27.
B.
Venkataraman
,
H.
Hou
,
Z.
Zang
,
S.
Chen
,
G.
Bandukwalla
, and
M.
Vernon
,
J. Chem. Phys.
92
,
5338
(
1990
).
28.
M.
Gutmann
,
J. M.
Janello
,
M. S.
Dickebohm
,
M.
Grossekathöfer
, and
J.
Lindener-Roenneke
,
J. Phys. Chem. A
102
,
4138
(
1998
).
29.
M.
Gutmann
,
M. S.
Dickebohm
, and
J. M.
Janello
,
J. Phys. Chem. A
103
,
2580
(
1999
).
30.
L. F.
Gomez
,
E.
Loginov
,
R.
Sliter
, and
A. F.
Vilesov
,
J. Chem. Phys.
135
,
154201
(
2011
).
31.
A. M.
Ellis
and
S.
Yang
,
Phys. Rev. A
76
,
032714
(
2007
).
32.
F.
Ferreira da Silva
,
S.
Jaksch
,
G.
Martins
,
H. M.
Dang
,
M.
Damp
,
S.
Denifl
,
T. D.
Märk
,
P.
Limão-Vieira
,
J.
Liu
,
S.
Yang
,
A. M.
Ellis
, and
P.
Scheier
,
Phys. Chem. Chem. Phys.
11
,
11631
(
2009
).
33.
S.
Denifl
,
F.
Zappa
,
A.
Mauracher
,
F.
Ferreira da Silva
,
A.
Bacher
,
O.
Echt
,
T. D.
Märk
,
D. K.
Böhme
, and
P.
Scheier
,
ChemPhysChem
9
,
1387
1389
(
2008
).
34.
S.
Denifl
,
F.
Zappa
,
I.
Mähr
,
A.
Mauracher
,
M.
Probst
,
T. D.
Märk
, and
P.
Scheier
,
J. Am. Chem. Soc.
130
,
5065
5071
(
2008
).
You do not currently have access to this content.