The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the well established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H–Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first benchmarked for vertical excitation energies of open- and closed-shell systems in comparison to other semi-empirical methods and applied to exemplary problems in electronic spectroscopy. As side products of the development, a robust and efficient valence electron TB method for the accurate determination of atomic charges as well as a more accurate calculation scheme of dipole rotatory strengths within the Tamm-Dancoff approximation is proposed.

1.
H.
Koch
and
P.
Jørgensen
,
J. Chem. Phys.
93
,
3333
(
1990
).
2.
D. C.
Comeau
and
R. J.
Bartlett
,
Chem. Phys. Lett.
207
,
414
(
1993
).
3.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
243
,
409
418
(
1995
).
4.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J.-P.
Malrieu
,
J. Chem. Phys.
114
,
10252
(
2001
).
5.
D.
Kats
and
M.
Schütz
,
Z. Phys. Chem.
224
,
601
616
(
2010
).
6.
V.
Barone
and
A.
Polimeno
,
Chem. Soc. Rev.
36
,
1724
1731
(
2007
).
7.
D.
Jacquemin
,
E. A.
Perpete
,
G.
Scalmani
,
M. J.
Frisch
,
R.
Kobayashi
, and
C.
Adamo
,
J. Chem. Phys.
126
,
144105
(
2007
).
8.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,” in
Recent Advances in Density Functional Methods
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), Vol.
1
.
9.
E. K. U.
Gross
,
J. F.
Dobson
, and
M.
Petersilka
,
Top. Curr. Chem.
181
,
81
(
1996
).
10.
R.
Bauernschmitt
and
R.
Ahlrichs
,
Chem. Phys. Lett.
256
,
454
(
1996
).
11.
F.
Furche
,
J. Chem. Phys.
114
,
5982
5992
(
2001
).
12.
S.
Grimme
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
(
Wiley-VCH
,
New York
,
2004
), Vol.
20
, pp.
153
218
.
13.
A.
Dreuw
and
M.
Head-Gordon
,
Chem. Rev.
105
,
4009
4037
(
2005
).
14.
P. H. P.
Harbach
and
A.
Dreuw
, in
Modeling of Molecular Properties
, edited by
P.
Comba
(
Wiley-VCH
,
Weinheim
,
2011
).
15.
M. A. L.
Marques
and
A.
Rubio
,
Phys. Chem. Chem. Phys.
11
,
4436
(
2009
) (special issue).
16.
R. M.
Parrish
,
E. G.
Hohenstein
, and
T. J.
Martínez
,
J. Chem. Theory Comput.
12
(
7
),
3003
3007
(
2016
).
17.
F.
Furche
,
B. T.
Krull
,
B. D.
Nguyen
, and
J.
Kwon
,
J. Chem. Phys.
144
,
174105
(
2016
).
18.
C. M.
Isborn
,
N.
Luehr
,
I. S.
Ufimtsev
, and
T. J.
Martinez
,
J. Chem. Theory Comput.
7
,
1814
1823
(
2011
).
19.
S.
Grimme
,
J. Chem. Phys.
138
,
244104
(
2013
).
20.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
(
McGraw-Hill
,
New York
,
1971
).
21.
S.
Hirata
and
M.
Head-Gordon
,
Chem. Phys. Lett.
314
,
291
(
1999
).
22.
C.
Bannwarth
and
S.
Grimme
,
Comput. Theor. Chem.
1040-1041
,
45
53
(
2014
).
23.
T.
Risthaus
,
A.
Hansen
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
28
,
14408
14419
(
2014
).
24.
C.
Wiebeler
,
C. A.
Bader
,
C.
Meier
, and
S.
Schumacher
,
Phys. Chem. Chem. Phys.
16
,
14531
14538
(
2014
).
25.
C.
Giansante
,
I.
Infante
,
E.
Fabiano
,
R.
Grisorio
,
G. P.
Suranna
, and
G.
Gigli
,
J. Am. Chem. Soc.
137
,
1875
1886
(
2015
).
26.
J. M.
Azpiroz
,
I.
Infante
, and
F. D.
Angelis
,
J. Phys. Chem. C
119
,
12739
12748
(
2015
).
27.
J. M.
Azpiroz
and
F. D.
Angelis
,
ACS Appl. Mater. Interfaces
7
,
19736
19745
(
2015
).
28.
J.
Chmela
,
M. E.
Harding
,
D.
Matioszek
,
C. E.
Anson
,
F.
Breher
, and
W.
Klopper
,
ChemPhysChem
17
,
191
(
2016
).
29.
C.
Gütz
,
R.
Hovorka
,
C.
Klein
,
Q.-Q.
Jiang
,
C.
Bannwarth
,
M.
Engeser
,
C.
Schmuck
,
W.
Assenmacher
,
W.
Mader
,
F.
Topić
,
K.
Rissanen
,
S.
Grimme
, and
A.
Lützen
,
Angew. Chem., Int. Ed.
53
,
1693
1698
(
2014
).
30.
C.
Gütz
,
R.
Hovorka
,
N.
Struch
,
J.
Bunzen
,
G.
Meyer-Eppler
,
Z.-W.
Qu
,
S.
Grimme
,
F.
Topić
,
K.
Rissanen
,
M.
Cetina
,
M.
Engeser
, and
A.
Lützen
,
J. Am. Chem. Soc.
136
(
33
),
11830
11838
(
2014
).
31.
G.
Meyer-Eppler
,
R.
Sure
,
A.
Schneider
,
G.
Schnakenburg
,
S.
Grimme
, and
A.
Lützen
,
J. Org. Chem.
79
(
14
),
6679
6687
(
2014
).
32.
C.
Bannwarth
and
S.
Grimme
,
J. Phys. Chem. A
119
(
15
),
3653
3662
(
2015
).
33.
A.
Jarzebski
,
C.
Bannwarth
,
C.
Tenten
,
C.
Benkhäuser
,
G.
Schnakenburg
,
S.
Grimme
, and
A.
Lützen
,
Synthesis
47
,
3118
3132
(
2015
).
34.
J. R.
Frost
,
S. M.
Huber
,
S.
Breitenlechner
,
C.
Bannwarth
, and
T.
Bach
,
Angew. Chem., Int. Ed.
54
(
2
),
691
695
(
2015
).
35.
C.
Bannwarth
,
J.
Seibert
, and
S.
Grimme
,
Chirality
,
28
,
365
369
(
2016
).
36.
A. C.
Gehrold
,
T.
Bruhn
, and
G.
Bringmann
,
J. Org. Chem.
81
(
3
),
1075
1088
(
2016
).
37.
T. A.
Niehaus
,
S.
Suhai
,
F. D.
Sala
,
P.
Lugli
,
M.
Elstner
,
G.
Seifert
, and
T.
Frauenheim
,
Phys. Rev. B
63
,
085108
(
2001
).
38.
F.
Trani
,
G.
Scalmani
,
G.
Zheng
,
I.
Carnimeo
,
M. J.
Frisch
, and
V.
Barone
,
J. Chem. Theory Comput.
7
,
3304
3313
(
2011
).
39.
T.
Kowalczyk
,
K.
Le
, and
S.
Irle
,
J. Chem. Theory Comput.
12
,
313
323
(
2016
).
40.
C.
Hättig
and
F.
Weigend
,
J. Chem. Phys.
113
,
5154
5161
(
2000
).
41.
A.
Hellweg
,
S. A.
Grün
, and
C.
Hättig
,
Phys. Chem. Chem. Phys.
10
,
4119
4127
(
2008
).
42.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
6170
(
1999
).
43.
A. V.
Marenich
,
S. V.
Jerome
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
8
,
527
541
(
2012
).
44.
S.
Grimme
,
J. Chem. Theory Comput.
10
,
4497
4514
(
2014
).
45.
J.
Gasteiger
and
M.
Marsili
,
Tetrahedron Lett.
19
,
3181
3184
(
1978
).
46.
T.
Frauenheim
,
G.
Seifert
,
M.
Elstner
,
T.
Niehaus
,
C.
Köhler
,
M.
Amkreutz
,
M.
Sternberg
,
Z.
Hajnal
,
A. D.
Carlo
, and
S.
Suhai
,
J. Phys.: Condens. Matter
14
,
3015
(
2002
).
47.
D. P.
Chong
,
Mol. Phys.
103
,
749
761
(
2005
).
48.
S.
Grimme
,
L.
Goerigk
, and
R. F.
Fink
,
WIREs: Comput. Mol. Sci.
2
,
868
885
(
2012
).
49.
Y.
Zhang
and
W.
Yang
,
J. Chem. Phys.
109
,
2604
2608
(
1998
).
50.
O.
Gritsenko
,
B.
Ensing
,
P. R. T.
Schipper
, and
E. J.
Baerends
,
J. Phys. Chem. A
104
,
8558
8565
(
2000
).
51.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
(
12
),
4007
4016
(
2004
).
52.
W.
Weber
and
W.
Thiel
,
Theor. Chem. Acc.
103
,
495
506
(
2000
).
53.
W. Thiel, MNDO2005 Version 7.0, MPI für Kohlenforschung, Mülheim, Germany, 2005.
54.
J. J. P.
Stewart
,
J. Mol. Model.
13
,
1173
(
2007
).
55.
T.
Bredow
and
K.
Jug
, in
Encyclopedia of Computational Chemistry (online edition)
, edited by
P.
von Ragué Schleyer
(
Wiley
,
New York
,
2004
).
56.
I.
Gadaczek
,
K.
Krause
,
K. J.
Hintze
, and
T.
Bredow
,
J. Chem. Theory Comput.
7
,
3675
3685
(
2011
).
57.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
1377
(
1993
).
58.
H.
Eshuis
,
J.
Yarkony
, and
F.
Furche
,
J. Chem. Phys.
132
,
234114
(
2010
).
59.
M.
Isegawa
and
D. G.
Truhlar
,
J. Chem. Phys.
138
,
134111
(
2013
).
60.
S.
Grimme
,
Chem. Phys. Lett.
259
,
128
(
1996
).
61.
P.-O.
Löwdin
,
J. Chem. Phys.
18
,
365
(
1950
).
62.
K.
Nishimoto
and
N.
Mataga
,
Z. Phys. Chem.
12
,
335
338
(
1957
).
63.
K.
Ohno
,
Theor. Chim. Acta
2
,
219
(
1964
).
64.
G.
Klopman
,
J. Am. Chem. Soc.
86
,
4550
4557
(
1964
).
65.
D. C.
Ghosh
and
N.
Islam
,
Int. J. Quantum Chem.
110
,
1206
1213
(
2010
).
66.
M.
Dierksen
and
S.
Grimme
,
J. Phys. Chem. A
108
,
10225
10237
(
2004
).
67.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
68.
R. J.
Buenker
and
S. D.
Peyerimhoff
,
Theor. Chim. Acta
35
,
33
58
(
1974
).
69.
S.
Grimme
and
M.
Waletzke
,
J. Chem. Phys.
111
,
5645
(
1999
).
70.
F.
Neese
,
J. Chem. Phys.
119
,
9428
9443
(
2003
).
71.
T. D.
Bouman
and
A. E.
Hansen
,
J. Chem. Phys.
66
,
3460
3467
(
1977
).
72.
R. C.
Bingham
,
M. J. S.
Dewar
, and
D. H.
Lo
,
J. Am. Chem. Soc.
97
,
1285
1293
(
1975
).
73.
I.
Warnke
and
F.
Furche
,
WIREs: Comput. Mol. Sci.
2
,
150
166
(
2012
).
74.
R. F.
Stewart
,
J. Chem. Phys.
52
,
431
438
(
1970
).
75.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev. B
58
,
7260
7268
(
1998
).
76.
N. D.
Mermin
,
Phys. Rev. A
137
,
1441
1443
(
1965
).
77.
F. L.
Hirshfeld
,
Theor. Chim. Acta
44
,
129
138
(
1977
).
78.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
5835
(
1994
).
79.
J. W.
Storer
,
D. J.
Giesen
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Comput.-Aided Mol. Des.
9
,
87
110
.
80.
C. J.
Cramer
and
D. G.
Truhlar
,
J. Comput.-Aided Mol. Des.
6
,
629
666
(
1992
).
81.
A.
Gonzalez-Lafont
,
T. N.
Truong
, and
D. G.
Truhlar
,
J. Phys. Chem.
95
,
4618
4627
(
1991
).
82.
K. B.
Wiberg
,
Tetrahedron
24
,
1083
1096
(
1968
).
83.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
84.
F.
Weigend
,
F.
Furche
, and
R.
Ahlrichs
,
J. Chem. Phys.
119
,
12753
12762
(
2003
).
85.
See supplementary material at http://dx.doi.org/10.1063/1.4959605 for Cartesian coordinates of the investigated molecules. Lewis structures of all systems considered in the cross-check (see Table V) and optical rotation study (see Figure 4(b)) are given in Figures S1 and S3, respectively. Computed ORs from TD-DFT and sTD-DFT are compared in Figure S4. ECD spectra computed with sTD-DFT, sTDA, and A + B/2 corrected sTDA for theα-helical oligopeptide NMe-Ala19-Ace and forE-cyclooctene are given in Figures S2 and S5, respectively. A correlation plot of the S 2 expectation value from unrestricted DFT and XTB is given in Figure S6. Timings for the (s)TD-DFT treatments of indigo, [16]helicene, and Ala20 are listed in Table S1. Tables S2 and S3 contain all element-specific parameters.
86.
S.
Roehrig
,
A.
Straub
,
J.
Pohlmann
,
T.
Lampe
,
J.
Pernerstorfer
,
K.-H.
Schlemmer
,
P.
Reinemer
, and
E.
Perzborn
,
J. Med. Chem.
48
(
19
),
5900
5908
(
2005
).
87.
K.
Levenberg
,
Q. Appl. Math.
2
,
164
168
(1944), http://www.jstor.org/stable/43633451.
88.
D.
Marquardt
,
J. Soc. Ind. Appl. Math.
11
,
431
441
(
1963
).
89.
S.
Grimme
,
J. G.
Brandenburg
,
C.
Bannwarth
, and
A.
Hansen
,
J. Chem. Phys.
143
,
054107
(
2015
).
90.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
91.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Phys.
132
,
184103
(
2010
).
92.
C.
Brückner
and
B.
Engels
,
J. Phys. Chem. A
119
,
12876
12891
(
2015
).
93.
Z.
Li
and
W.
Liu
,
J. Chem. Theory Comput.
12
,
238
260
(
2016
).
94.
F.
Turecek
,
J. Phys. Chem. A
119
,
10101
10111
(
2015
).
95.
R.
Sure
and
S.
Grimme
,
J. Comput. Chem.
34
,
1672
1685
(
2013
).
96.
TURBOMOLE V7.0 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com.
97.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
169
(
1989
).
98.
F.
Furche
,
R.
Ahlrichs
,
C.
Hättig
,
W.
Klopper
,
M.
Sierka
, and
F.
Weigend
,
WIREs: Comput. Mol. Sci.
4
,
91
100
(
2014
).
99.
F.
Neese
,
WIREs: Comput. Mol. Sci.
2
,
73
78
(
2012
).
100.
See http://www.thch.uni-bonn.de/ for the stda and xtb executables.
101.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
518
(
1993
).
102.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
,
Theor. Chem. Acc.
97
,
119
124
(
1997
).
103.
F.
Weigend
,
Phys. Chem. Chem. Phys.
8
,
1057
(
2006
).
104.
J. J. P.
Stewart
, MOPAC2012, Stewart Computational Chemistry, Colorado Springs, CO, USA, 2012.
105.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
967
(
2001
).
106.
ADF DFTB 2013, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
107.
M.
Wahiduzzaman
,
A. F.
Oliveira
,
P.
Philipsen
,
L.
Zhechkov
,
E.
van Lenthe
,
H. A.
Witek
, and
T.
Heine
,
J. Chem. Theory Comput.
9
(
9
),
4006
(
2013
).
108.
F.
Furche
and
D.
Rappoport
, in
Theoretical and Computational Chemistry
, edited by
M.
Olivucci
(
Elsevier
,
Amsterdam
,
2005
), Vol.
16
, p.
93
.
109.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
3183
(
2002
).
110.
M. B.
Robin
,
Higher Excited States of Polyatomic Molecules
(
Academic Press
,
New York
,
1975
), Vol.
1-2
.
111.
M.
Gaus
,
A.
Goez
, and
M.
Elstner
,
J. Chem. Theory Comput.
9
,
338
354
(
2013
).
112.
S.
Grimme
,
J. Comput. Chem.
15
,
424
432
(
1994
).
113.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
2577
(
1992
).
114.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
115.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
1465
(
2011
).
116.
H.
Goto
,
N.
Harada
,
J.
Crassous
, and
F.
Diederich
,
J. Chem. Soc., Perkin Trans. 2
1998
,
1719
1724
.
117.
D.
Chaudhuri
,
E.
Sigmund
,
A.
Meyer
,
L.
Röck
,
P.
Klemm
,
S.
Lautenschlager
,
A.
Schmid
,
S. R.
Yost
,
T. V.
Voorhis
,
S.
Bange
,
S.
Höger
, and
J. M.
Lupton
,
Angew. Chem., Int. Ed.
52
,
13449
13452
(
2013
).
118.
S.
Claus
and
S.
Höger
, private communication (2015).
119.
Y.
Yang
,
H.
Yu
,
D.
York
,
Q.
Cui
, and
M.
Elstner
,
J. Phys. Chem. A
111
,
10861
10873
(
2007
).
120.
T.
Frauenheim
,
DFTB+ (Density Functional Based Tight Binding)
(
DFTB.ORG, Universität Bremen
,
Bremen, Germany
,
2008
).
121.
J. G.
Brandenburg
,
M.
Hochheim
,
T.
Bredow
, and
S.
Grimme
,
J. Phys. Chem. Lett.
5
,
4275
4284
(
2014
).
122.
Y.-S.
Lin
,
G.-D.
Li
,
S.-P.
Mao
, and
J.-D.
Chai
,
J. Chem. Theory Comput.
9
,
263
272
(
2013
).
123.
L.
Goerigk
and
S.
Grimme
,
ChemPhysChem
9
,
2467
2470
(
2008
).
124.
R.
Rüger
,
E.
van Lenthe
,
T.
Heine
, and
L.
Visscher
,
J. Chem. Phys.
144
,
184103
(
2016
).
125.
R.
Rüger
,
E.
van Lenthe
,
Y.
Lu
,
J.
Frenzel
,
T.
Heine
, and
L.
Visscher
,
J. Chem. Theory Comput.
11
,
157
167
(
2015
).
126.
G.-J.
Huang
,
M. A.
Harris
,
M. D.
Krzyaniak
,
E. A.
Margulies
,
S. M.
Dyar
,
R. J.
Lindquist
,
Y.
Wu
,
V. V.
Roznyatovskiy
,
Y.-L.
Wu
,
R. M.
Young
, and
M. R.
Wasielewski
,
J. Phys. Chem. B
120
,
756
765
(
2016
).
127.
H.
Nakanishi
,
N.
Sumi
,
S.
Ueno
,
K.
Takimiya
,
Y.
Aso
,
T.
Otsubo
,
K.
Komaguchi
,
M.
Shiotani
, and
N.
Ohta
,
Synth. Met.
119
,
413
414
(
2001
).
128.
D.
Schmidt
,
M.
Son
,
J. M.
Lim
,
M.-J.
Lin
,
I.
Krummenacher
,
H.
Braunschweig
,
D.
Kim
, and
F.
Würthner
,
Angew. Chem., Int. Ed.
54
,
13980
13984
(
2015
).
129.
C.
Bannwarth
,
P.
Shushkov
, and
S.
Grimme
, “
Open-shell excitation spectra within the unrestricted simplified TD-DFT and TDA-DFT formalism
” (unpublished).
130.
R. W.
Woody
, in
Comprehensive Chiroptical Spectroscopy, Volume 2: Applications in Stereochemical Analysis of Synthetic Compounds
, edited by
K. N. N.
Berova
,
P. L.
Polavarapu
, and
R. W.
Woody
(
Wiley
,
New York
,
2012
), pp.
475
497
.
131.
C.
Toniolo
,
F.
Formaggio
, and
R. W.
Woody
, in
Comprehensive Chiroptical Spectroscopy, Volume 2: Applications in Stereochemical Analysis of Synthetic Compounds
, edited by
K. N. N.
Berova
,
P. L.
Polavarapu
, and
R. W.
Woody
(
Wiley
,
New York
,
2012
), pp.
499
574
.
132.
R. W.
Woody
,
Biomed. Spectrosc. Imaging
4
,
5
34
(
2015
).
133.
W. C.
Johnson
and
I.
Tinoco
,
J. Am. Chem. Soc.
94
,
4389
4390
(
1972
).
134.
B. A.
Wallace
,
K.
Gekko
,
S. V.
Hoffmann
,
Y.
Lin
,
J. C.
Sutherland
,
Y.
Tao
,
F.
Wien
, and
R. W.
Janes
,
Nucl. Instrum. Methods Phys. Res., Sect. A
649
,
177
178
(
2011
).
135.
C.
Sasaki
,
K.
Nakajima
,
M.
Kojima
, and
J.
Fujita
,
Bull. Chem. Soc. Jpn.
64
,
1318
1324
(
1991
).
136.
M.
Dierksen
and
S.
Grimme
,
J. Chem. Phys.
120
,
3544
(
2004
).
137.
V.
Barone
,
A.
Baiardi
,
M.
Biczysko
,
J.
Bloino
,
C.
Cappelli
, and
F.
Lipparini
,
Phys. Chem. Chem. Phys.
14
,
12404
12422
(
2012
).
138.
E.
Pantos
,
J.
Philis
, and
A.
Bolovinos
,
J. Mol. Spectrosc.
72
,
36
43
(
1978
).
139.
S.
Leach
,
M.
Vervloet
,
A.
Despres
,
E.
Breheret
,
J. P.
Hare
,
T. J.
Dennis
,
H. W.
Kroto
,
R.
Taylor
, and
D. R. M.
Walton
,
Chem. Phys.
160
,
451
466
(
1992
).

Supplementary Material

You do not currently have access to this content.