Electrokinetic transport phenomena can strongly influence the behaviour of macromolecules and colloidal particles in solution, with applications in, e.g., DNA translocation through nanopores, electro-osmotic flow in nanocapillaries, and electrophoresis of charged macromolecules. Numerical simulations are an important tool to investigate these electrokinetic phenomena, but are often plagued by spurious fluxes and spurious flows that can easily exceed physical fluxes and flows. Here, we present a method that reduces one of these spurious currents, spurious flow, by several orders of magnitude. We demonstrate the effectiveness and generality of our method for both the electrokinetic lattice-Boltzmann and finite-element-method based algorithms by simulating a charged sphere in an electrolyte solution and flow through a nanopore. We also show that previous attempts to suppress these spurious currents introduce other sources of error.

1.
R. W.
O’Brien
and
L. R.
White
,
J. Chem. Soc., Faraday Trans. 2
74
,
1607
(
1978
).
2.
H.
Ohshima
,
Adv. Colloid Interface Sci.
62
,
189
(
1995
).
3.
H.
Ohshima
,
Colloids Surf., A
103
,
249
(
1995
).
4.
R.
Hill
,
D.
Saville
, and
W.
Russel
,
J. Colloid Interface Sci.
258
,
56
(
2003
).
5.
R. M. M.
Smeets
,
U. F.
Keyser
,
D.
Krapf
,
M.-Y.
Wu
,
N. H.
Dekker
, and
C.
Dekker
,
Nano Lett.
6
,
89
(
2006
).
7.
R.
Dhopeshwarkar
,
R. M.
Crooks
,
D.
Hlushkou
, and
U.
Tallarek
,
Anal. Chem.
80
,
1039
(
2008
).
8.
W.-J.
Lan
,
D. A.
Holden
,
B.
Zhang
, and
H. S.
White
,
Anal. Chem.
83
,
3840
(
2011
).
9.
S. R.
German
,
L.
Luo
,
H. S.
White
, and
T. L.
Mega
,
J. Phys. Chem. C
117
,
703
(
2013
).
10.
W.-J.
Lan
,
C.
Kubeil
,
J.-W.
Xiong
,
A.
Bund
, and
H. S.
White
,
J. Phys. Chem. C
118
,
2726
(
2014
).
11.
D.
Burgreen
and
F. R.
Nakache
,
J. Phys. Chem.
68
,
1084
(
1964
).
12.
C. L.
Rice
and
R.
Whitehead
,
J. Phys. Chem.
69
,
4017
(
1965
).
13.
H.
Daiguji
,
Y.
Oka
, and
K.
Shirono
,
Nano Lett.
5
,
2274
(
2005
).
14.
H. S.
White
and
A.
Bund
,
Langmuir
24
,
2212
(
2008
).
15.
P.
Berg
and
K.
Ladipo
,
Proc. R. Soc. London, Ser. A
465
,
2663
(
2009
).
16.
N.
Laohakunakorn
and
U. F.
Keyser
,
Nanotechnology
26
,
275202
(
2015
).
17.
N.
Laohakunakorn
,
V. V.
Thacker
,
M.
Muthukumar
, and
U. F.
Keyser
,
Nano Lett.
15
,
695
(
2015
).
18.
J.
de Graaf
,
G.
Rempfer
, and
C.
Holm
,
IEEE Trans. Nanobiosci.
14
,
272
(
2015
).
19.
A. T.
Brown
and
W. C. K.
Poon
,
Soft Matter
10
,
4016
(
2014
).
20.
J.
Moran
,
P.
Wheat
, and
J.
Posner
,
Phys. Rev. E
81
,
065302
(
2010
).
21.
J. L.
Moran
and
J. D.
Posner
,
J. Fluid Mech.
680
,
31
(
2011
).
22.
B.
Sabass
and
U.
Seifert
,
J. Chem. Phys.
136
,
214507
(
2012
).
23.
P.
Kreissl
,
C.
Holm
, and
J.
de Graaf
,
J. Chem. Phys.
144
,
204902
(
2016
).
24.
A.
Brown
,
W.
Poon
,
C.
Holm
, and
J.
de Graaf
, e-print arXiv:1512.01778 (2015).
25.
J.-P.
Hsu
,
K.-L.
Liu
,
W.-L.
Hsu
,
L.-H.
Yeh
, and
S.
Tseng
,
J. Phys. Chem. B
114
,
2766
(
2010
).
26.
P.
Debye
and
E.
Hückel
,
Phys. Z.
24
,
185
(
1923
).
27.
M. v.
Smoluchowski
,
Bull. Int. Acad. Sci. Cracovie
1
,
182
(
1903
).
28.
D. C.
Henry
,
Proc. R. Soc. London, Ser. A
133
,
106
(
1931
).
29.
E.
Hückel
,
Phys. Z.
25
,
204
(
1924
).
30.
R. D.
Groot
,
J. Chem. Phys.
118
,
11265
(
2003
).
31.
J.
Smiatek
and
F.
Schmid
,
Comput. Phys. Commun.
182
,
1941
(
2011
).
32.
S.
Frank
and
R. G.
Winkler
,
Europhys. Lett.
83
,
38004
(
2008
).
33.
S.
Frank
and
R. G.
Winkler
,
J. Chem. Phys.
131
(
2009
).
34.
G.
Gompper
,
T.
Ihle
,
D. M.
Kroll
, and
R. G.
Winkler
,
Adv. Polym. Sci.
221
,
1
(
2009
).
35.
P.
Ahlrichs
and
B.
Dünweg
,
J. Chem. Phys.
111
,
8225
(
1999
).
36.
V.
Lobaskin
,
B.
Dünweg
, and
C.
Holm
,
J. Phys.: Condens. Matter
16
,
S4063
(
2004
).
37.
V.
Lobaskin
,
B.
Dünweg
,
M.
Medebach
,
T.
Palberg
, and
C.
Holm
,
Phys. Rev. Lett.
98
,
176105
(
2007
).
38.
K.
Grass
,
U.
Böhme
,
U.
Scheler
,
H.
Cottet
, and
C.
Holm
,
Phys. Rev. Lett.
100
,
096104
(
2008
).
39.
S.
Raafatnia
,
O. A.
Hickey
, and
C.
Holm
,
Phys. Rev. Lett.
113
,
238301
(
2014
).
40.
F.
Fahrenberger
,
O. A.
Hickey
,
J.
Smiatek
, and
C.
Holm
,
Phys. Rev. Lett.
115
,
118301
(
2015
).
41.
B.
Rotenberg
and
I.
Pagonabarraga
,
Mol. Phys.
111
,
827
(
2013
).
42.
G. W.
Slater
,
C.
Holm
,
M. V.
Chubynsky
,
H. W.
de Haan
,
A.
Dubé
,
K.
Grass
,
O. A.
Hickey
,
C.
Kingsburry
,
D.
Sean
,
T. N.
Shendruk
, and
L.
Zhan
,
Electrophoresis
30
,
792
(
2009
).
43.
N.
Laohakunakorn
,
S.
Ghosal
,
O.
Otto
,
K.
Misiunas
, and
U. F.
Keyser
,
Nano Lett.
13
,
2798
(
2013
).
44.
F.
Capuani
,
I.
Pagonabarraga
, and
D.
Frenkel
,
J. Chem. Phys.
121
,
973
(
2004
).
45.
G.
Giupponi
and
I.
Pagonabarraga
,
Phys. Rev. Lett.
106
,
248304
(
2011
).
46.
A.
Einstein
,
Ann. Phys. (Berlin)
4
,
549
560
(
1905
).
47.
M.
von Smoluchowski
,
Ann. Phys. (Berlin)
326
,
756
(
1906
).
48.
D.
Hlushkou
,
A.
Seidel-Morgenstern
, and
U.
Tallarek
,
Langmuir
21
,
6097
(
2005
).
49.
D.
Andelman
, in
Handbook of Biological Physics
(
School of Physics and Astronomy, Tel Aviv University
,
1995
), Chap. 12, p.
603
.
50.
NATO Science Series II—Mathematics, Physics and Chemistry
, edited by
C.
Holm
,
P.
Kékicheff
, and
R.
Podgornik
(
Kluwer Academic Publishers
,
2001
), Vol.
46
.
51.
Z.
Guo
,
C.
Zheng
, and
B.
Shi
,
Phys. Rev. E
65
,
046308
(
2002
).
52.
B.
Dünweg
and
A. J. C.
Ladd
,
Lattice Boltzmann Simulations of Soft Matter Systems
(
Springer Berlin Heidelberg
,
2008
), pp.
1
78
.
53.
U. D.
Schiller
,
Comput. Phys. Commun.
185
,
2586
(
2014
).
54.
B.
Guo
and
I.
Babuška
,
Comput. Mech.
1
,
21
(
1986
).
55.
L. P.
Fischer
,
T.
Peter
,
C.
Holm
, and
J. de
Graaf
,
J. Chem. Phys.
143
,
084107
(
2015
).
56.
J. de
Graaf
,
T.
Peter
,
L. P.
Fischer
, and
C.
Holm
,
J. Chem. Phys.
143
,
084108
(
2015
).
You do not currently have access to this content.