Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

1.
T.
Bartels-Rausch
,
V.
Bergeron
,
J. H. E.
Cartwright
,
R.
Escribano
,
J. L.
Finney
,
H.
Grothe
,
P. J.
Gutiérrez
,
J.
Haapala
,
W. F.
Kuhs
,
J. B. C.
Pettersson
,
S. D.
Price
,
C. I.
Sainz-Díaz
,
D. J.
Stokes
,
G.
Strazzulla
,
E. S.
Thomson
,
H.
Trinks
, and
N.
Uras-Aytemiz
, “
Ice structures, patterns, and processes: A view across the ice-fields
,”
Rev. Mod. Phys.
84
,
885
(
2012
).
2.
M. B.
Baker
and
T.
Peter
, “
Small-scale cloud processes and climate
,”
Nature
451
,
299
(
2008
).
3.
K. C.
Young
,
Microphysical Processes in Clouds
(
Oxford University Press
,
New York, NY
,
1993
).
4.
H.
König
, “
A cubic modification of ice
,”
Z. Kristallogr.
105
,
279
(
1944
).
5.
J. A.
McMillan
and
S. C.
Los
, “
Vitreous ice: Irreversible transformations during warm-up
,”
Nature
206
,
806
(
1965
).
6.
M.
Sugisaki
,
H.
Suga
, and
S.
Seki
, “
Calorimetric study of the glassy state IV: Heat capacities of glassy water and cubic ice
,”
Bull. Chem. Soc. Jpn.
41
,
2591
(
1968
).
7.
T. H. G.
Carr
,
J. J.
Shephard
, and
C. G.
Salzmann
, “
Spectroscopic signature of stacking disorder in ice I
,”
J. Phys. Chem. Lett.
5
,
2469
(
2014
).
8.
W. F.
Kuhs
,
C.
Sippel
,
A.
Falenty
, and
T. C.
Hansen
, “
Extent and relevance of stacking disorder in ice Ic
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
21259
(
2012
).
9.
T. L.
Malkin
,
B. J.
Murray
,
C. G.
Salzmann
,
V.
Molinero
,
S. J.
Pickering
, and
T. F.
Whale
, “
Stacking disorder in ice I
,”
Phys. Chem. Chem. Phys.
17
,
60
(
2015
).
10.
E. B.
Moore
,
E.
de la Llave
,
K.
Welke
,
D. A.
Scherlis
, and
V.
Molinero
, “
Freezing, melting and structures of ice in a hydrophilic nanopore
,”
Phys. Chem. Chem. Phys.
12
,
4124
(
2010
).
11.
K.
Thürmer
and
S.
Nie
, “
Formation of hexagonal and cubic ice during low-temperature growth
,”
Proc. Natl. Acad. Sci. U. S. A.
110
,
11757
(
2013
).
12.
O.
Yamamuro
,
M.
Oguni
,
T.
Matsuo
, and
H.
Suga
, “
Heat capacity and glass structure of pure and doped cubic ices
,”
J. Phys. Chem. Solids
48
,
935
(
1987
).
13.
Y. P.
Handa
,
D. D.
Klug
, and
E.
Whalley
, “
Difference in energy between cubic and hexagonal ice
,”
J. Chem. Phys.
84
,
7009
(
1986
).
14.
E.
Mayer
and
A.
Hallbrucker
, “
Cubic ice from liquid water
,”
Nature
325
,
601
(
1987
).
15.
B. J.
Murray
,
S. L.
Broadley
,
T. W.
Wilson
,
S. J.
Bull
,
R. H.
Wills
,
H. K.
Christenson
, and
E. J.
Murray
, “
Kinetics of the homogeneous freezing of water
,”
Phys. Chem. Chem. Phys.
12
,
10380
(
2010
).
16.
D. C.
Steytler
,
J. C.
Dore
, and
C. J.
Wright
, “
Neutron diffraction study of cubic ice nucleation in a porous silica network
,”
J. Phys. Chem.
87
,
2458
(
1983
).
17.
E. A.
Engel
,
B.
Monserrat
, and
R. J.
Needs
, “
Anharmonic nuclear motion and the relative stability of hexagonal and cubic ice
,”
Phys. Rev. X
5
,
021033
(
2015
).
18.
B. J.
Murray
,
D. A.
Knopf
, and
A. K.
Bertram
, “
The formation of cubic ice under conditions relevant to the Earth’s atmosphere
,”
Nature
434
,
202
(
2005
).
19.
J. E.
Shilling
,
M. A.
Tolbert
,
O. B.
Toon
,
E. J.
Jensen
,
B. J.
Murray
, and
A. K.
Bertram
, “
Measurements of the vapor pressure of cubic ice and their implications for atmospheric ice clouds
,”
Geophys. Res. Lett.
33
,
L17801
, doi:10.1029/2006GL026671 (
2006
).
20.
K. G.
Libbrecht
, “
The physics of snow crystals
,”
Rep. Prog. Phys.
68
,
855
(
2005
).
21.
M. J.
Shultz
,
P. J.
Bisson
, and
A.
Brumberg
, “
Best face forward: Crystal-face competition at the ice–water interface
,”
J. Phys. Chem. B
118
,
7972
(
2014
).
22.
W. C.
Pfalzgraff
,
R. M.
Hulscher
, and
S. P.
Neshyba
, “
Scanning electron microscopy and molecular dynamics of surfaces of growing and ablating hexagonal ice crystals
,”
Atmos. Chem. Phys.
10
,
2927
(
2010
).
23.
X.
Wei
,
P. B.
Miranda
, and
Y. R.
Shen
, “
Surface vibrational spectroscopic study of surface melting of ice
,”
Phys. Rev. Lett.
86
,
1554
(
2001
).
24.
H.
Groenzin
,
I.
Li
,
V.
Buch
, and
M. J.
Shultz
, “
The single-crystal, basal face of ice Ih investigated with sum frequency generation
,”
J. Chem. Phys.
127
,
214502
(
2007
).
25.
P. J.
Bisson
and
M. J.
Shultz
, “
Hydrogen bonding in the prism face of ice I(h) via sum frequency vibrational spectroscopy
,”
J. Phys. Chem. A
117
,
6116
(
2013
).
26.
K. G.
Libbrecht
, “
On the equilibrium shape of an ice crystal
,” e-print arXiv:1205.1452 [cond-mat.mtrl-sci] (
2012
).
27.
J. D.
Bernal
and
R. H.
Fowler
, “
A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions
,”
J. Chem. Phys.
1
,
515
(
1933
).
28.
L.
Pauling
, “
The structure and entropy of ice and of other crystals with some randomness of atomic arrangement
,”
J. Am. Chem. Soc.
57
,
2680
(
1935
).
29.
Y.
Tajima
,
T.
Matsuo
, and
H.
Suga
, “
Phase transition in KOH-doped hexagonal ice
,”
Nature
299
,
810
(
1982
).
30.
S. M.
Jackson
and
R. W.
Whitworth
, “
Thermally-stimulated depolarization studies of the ice XI-ice Ih phase transition
,”
J. Phys. Chem. B
101
,
6177
(
1997
).
31.
J. F.
Nagle
, “
Lattice statistics of hydrogen bonded crystals. The residual entropy of ice
,”
J. Math. Phys.
7
,
1484
(
1966
).
32.
C. P.
Herrero
and
R.
Ramírez
, “
Configurational entropy of hydrogen-disordered ice polymorphs
,”
J. Chem. Phys.
140
,
234502
(
2014
).
33.
M.
Watkins
,
D.
Pan
,
E. G.
Wang
,
A.
Michaelides
,
J.
VandeVondele
, and
B.
Slater
, “
Large variation in ice surface dipoles and vacancy formation energies
,”
Nat. Mater.
10
,
794
(
2011
).
34.
Z.
Sun
,
D.
Pan
,
L.
Xu
, and
E.
Wang
, “
Role of proton ordering in adsorption preference of polar molecule on ice surface
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
13177
(
2012
).
35.
D.
Pan
,
L.
Liu
,
G. A.
Tribello
,
B.
Slater
,
A.
Michaelides
, and
E.
Wang
, “
Surface energy and surface proton order of the ice Ih basal and prism surfaces
,”
J. Phys.: Condens. Matter
22
,
074209
(
2010
).
36.
N. H.
Fletcher
, “
Reconstruction of ice crystal surfaces at low temperatures
,”
Philos. Mag. B
66
,
109
(
1992
).
37.
V.
Buch
,
H.
Groenzin
,
I.
Li
,
M. J.
Shultz
, and
E.
Tosatti
, “
Proton order in the ice crystal surface
,”
Proc. Natl. Acad. Sci. U. S. A.
105
,
5969
(
2008
).
38.
D.
Pan
,
L.
Liu
,
G. A.
Tribello
,
B.
Slater
,
A.
Michaelides
, and
E.
Wang
, “
Surface energy and surface proton order of ice Ih
,”
Phys. Rev. Lett.
101
,
155703
(
2008
).
39.
Z.
Raza
,
D.
Alfè
,
C. G.
Salzmann
,
J.
Klimeš
,
A.
Michaelides
, and
B.
Slater
, “
Proton ordering in cubic ice and hexagonal ice; a potential new ice phase–XIc
,”
Phys. Chem. Chem. Phys.
13
,
19788
(
2011
).
40.
V.
Dubrovskii
,
Nucleation Theory and Growth of Nanostructures
(
Springer
,
2014
).
41.
A.
Liebscher
, “
Aqueous fluids at elevated pressure and temperature
,”
Geofluids
10
,
3
(
2010
).
42.
J.
Klanova
,
P.
Klan
,
J.
Nosek
, and
I.
Holoubek
, “
Environmental ice photochemistry: Monochlorophenols
,”
Environ. Sci. Technol.
37
,
1568
(
2003
).
43.
M. P.
Bishop
 et al,
Encyclopedia of Snow, Ice and Glaciers
(
Springer
,
2011
).
44.
D.
Chandler
,
Classical and Quantum Dynamics in Condensed Phase Simulations
(
World Scientific
,
1998
).
45.
R. A.
Marcus
, “
On the theory of oxidation-reduction reactions involving electron transfer
,”
J. Chem. Phys.
24
,
966
(
1956
).
46.
S. J.
Singer
and
C.
Knight
, “
Hydrogen-bond topology and proton ordering in ice and water clusters
,” in
Advances in Chemical Physics
, edited by
S. A.
Rice
and
A. R.
Dinner
(
Wiley & Sons, Inc.
,
Hoboken, NJ
,
2011
), Vol.
147
.
47.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I. J.
Probert
,
K.
Refson
, and
M. C.
Payne
, “
First principles methods using CASTEP
,”
Z. Kristallogr.
220
,
567
(
2009
).
48.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
49.
B.
Santra
,
J.
Klimeš
,
A.
Tkatchenko
,
D.
Alfè
,
B.
Slater
,
A.
Michaelides
,
R.
Car
, and
M.
Scheffler
, “
On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures
,”
J. Chem. Phys.
139
,
154702
(
2013
).
50.
See supplementary material at http://dx.doi.org/10.1063/1.4959283 for details regarding the choice ofxc-functional, effects of quantum zero-point and thermal expansion, IR activity of vibrational modes, vibrational anharmonicity, and surface stresses.
51.
B.
Monserrat
,
N. D.
Drummond
, and
R. J.
Needs
, “
Anharmonic vibrational properties in periodic systems: Energy, electron-phonon coupling, and stress
,”
Phys. Rev. B
87
,
144302
(
2013
).
52.
C. E.
Patrick
and
F.
Giustino
, “
Unified theory of electron-phonon renormalization and phonon-assisted optical absorption
,”
J. Phys.: Condens. Matter
26
,
365503
(
2014
).
53.
B.
Monserrat
,
E. A.
Engel
, and
R. J.
Needs
, “
Giant electron-phonon interactions in molecular crystals and the importance of non-quadratic coupling
,”
Phys. Rev. B
92
,
140302(R)
(
2015
).
54.
E. A.
Engel
,
B.
Monserrat
, and
R. J.
Needs
, “
Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice
,”
J. Chem. Phys.
143
,
244708
(
2015
).
55.
G.
Antonius
,
S.
Poncé
,
P.
Boulanger
,
M.
Côté
, and
X.
Gonze
, “
Many-body effects on the zero-point renormalization of the band structure
,”
Phys. Rev. Lett.
112
,
215501
(
2014
).
56.
B.
Monserrat
, “
Correlation effects on electron-phonon coupling in semiconductors: Many-body theory along thermal lines
,”
Phys. Rev. B
93
,
100301(R)
(
2016
).
57.
Y. R.
Shen
, “
Basic theory of surface sum-frequency generation
,”
J. Phys. Chem. C
116
,
15505
(
2012
).
58.
P.
Guyot-Sionnest
and
Y. R.
Shen
, “
Bulk contribution in surface second-harmonic generation
,”
Phys. Rev. B
38
,
7985
(
1988
).
59.
A.
Morita
and
J. T.
Hynes
, “
A theoretical analysis of the sum frequency generation spectrum of the water surface. II. Time-dependent approach
,”
J. Phys. Chem. B
106
,
673
(
2002
).
60.
K.
Shiratori
and
A.
Morita
, “
Theory of quadrupole contributions from interface and bulk in second-order optical processes
,”
Bull. Chem. Soc. Jpn.
85
,
1061
(
2012
).
61.
T.
Kawaguchi
,
K.
Shiratori
,
Y.
Henmi
,
T.
Ishiyama
, and
A.
Morita
, “
Mechanisms of sum frequency generation from liquid benzene: Symmetry breaking at interface and bulk contribution
,”
J. Phys. Chem. C
116
,
13169
(
2012
).
62.
S. J.
Byrnes
,
P. L.
Geissler
, and
Y. R.
Shen
, “
Ambiguities in surface nonlinear spectroscopy calculations
,”
Chem. Phys. Lett.
516
,
115
(
2011
).
63.
M.
Sulpizi
,
M.
Salanne
,
M.
Sprik
, and
M.-P.
Gaigeot
, “
Vibrational sum frequency generation spectroscopy of the water liquid-vapor interface from density functional theory-based molecular dynamics simulations
,”
J. Phys. Chem. Lett.
4
,
83
(
2013
).
64.
Q.
Wan
and
G.
Galli
, “
First-principles framework to compute sum-frequency generation vibrational spectra of semiconductors and insulators
,”
Phys. Rev. Lett.
115
,
246404
(
2015
).
65.
T.
Ishiyama
,
H.
Takahashi
, and
A.
Morita
, “
Origin of vibrational spectroscopic response at ice surface
,”
J. Phys. Chem. Lett.
3
,
3001
(
2012
).
66.
R. J.
Needs
and
M. J.
Godfrey
, “
The origin and possible implications of surface stress on metals
,”
Phys. Scr.
T19B
,
391
(
1987
).
67.
Y.
Umeno
,
A.
Kushima
,
T.
Kitamura
,
P.
Gumbsch
, and
J.
Li
, “
Ab initio study of the surface properties and ideal strength of (100) silicon thin films
,”
Phys. Rev. B
72
,
165431
(
2005
).
68.
O. L.
Alerhand
,
D.
Vanderbilt
,
R. D.
Meade
, and
J. D.
Joannopoulos
, “
Spontaneous formation of stress domains on crystal-surfaces
,”
Phys. Rev. Lett.
61
,
1973
(
1988
).
69.
T.
Hiemstra
, “
Formation, stability, and solubility of metal oxide nanoparticles: Surface entropy, enthalpy, and free energy of ferrihydrite
,”
Geochim. Cosmochim. Acta
158
,
179
(
2015
).

Supplementary Material

You do not currently have access to this content.