Three-dimensional models for the aqueous solvation structures of chloride, bromide, and iodide are reported. K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near edge (MXAN) analyses found well-defined single shell solvation spheres for bromide and iodide. However, dissolved chloride proved structurally distinct, with two solvation shells needed to explain its strikingly different X-ray absorption near edge structure (XANES) spectrum. Final solvation models were as follows: iodide, 8 water molecules at 3.60 ± 0.13 Å and bromide, 8 water molecules at 3.40 ± 0.14 Å, while chloride solvation included 7 water molecules at 3.15 ± 0.10 Å, and a second shell of 7 water molecules at 4.14 ± 0.30 Å. Each of the three derived solvation shells is approximately uniformly disposed about the halides, with no global asymmetry. Time-dependent density functional theory calculations simulating the chloride XANES spectra following from alternative solvation spheres revealed surprising sensitivity of the electronic state to 6-, 7-, or 8-coordination, implying a strongly bounded phase space for the correct structure during an MXAN fit. MXAN analysis further showed that the asymmetric solvation predicted from molecular dynamics simulations using halide polarization can play no significant part in bulk solvation. Classical molecular dynamics used to explore chloride solvation found a 7-water solvation shell at 3.12 (−0.04/+0.3) Å, supporting the experimental result. These experiments provide the first fully three-dimensional structures presenting to atomic resolution the aqueous solvation spheres of the larger halide ions.

1.
T.-M.
Chang
and
L. X.
Dang
,
Chem. Rev.
106
,
1305
(
2006
).
2.
G. W.
Neilson
 et al,
Philos. Trans. R. Soc., A
359
,
1575
(
2001
).
3.
W. H.
Robertson
and
M. A.
Johnson
,
Annu. Rev. Phys. Chem.
54
,
173
(
2003
).
4.
P. R.
Smirnov
,
Russ. J. Gen. Chem.
83
,
1469
(
2013
).
5.
Y.
Marcus
,
Chem. Rev.
109
,
1346
(
2009
).
6.
R.
Tucceri
,
Surf. Sci. Rep.
56
,
85
(
2004
).
7.
L.
Ge
,
L.
Bernasconi
, and
P.
Hunt
,
Phys. Chem. Chem. Phys.
15
,
13169
(
2013
).
8.
D. M.
Rogers
and
T. L.
Beck
,
J. Chem. Phys.
132
,
014505
(
2010
).
9.
W.
Wachter
 et al,
J. Phys. Chem. A
109
,
8675
(
2005
).
10.
P.
Westh
 et al,
J. Phys. Chem. A
110
,
2072
(
2006
).
11.
I.
Waluyo
 et al,
J. Chem. Phys.
140
,
244506
(
2014
).
12.
J.
Boisson
 et al,
Phys. Chem. Chem. Phys.
13
,
19895
(
2011
).
13.
E. A.
Raymond
and
G. L.
Richmond
,
J. Phys. Chem. B
108
,
5051
(
2004
).
14.
A. H.
Narten
,
F.
Vaslow
, and
H. A.
Levy
,
J. Chem. Phys.
58
,
5017
(
1973
).
15.
A. G.
Sharpe
,
J. Chem. Educ.
67
,
309
(
1990
).
16.
M. D.
Baer
 et al,
J. Phys. Chem. B
118
,
7211
(
2014
).
17.
S.
Bouazizi
 et al,
J. Phys. Chem. B
110
,
23515
(
2006
).
18.
P.
D’Angelo
 et al,
J. Chem. Phys.
100
,
985
(
1994
).
19.
A.
Filipponi
 et al,
Chem. Phys. Lett.
225
,
150
(
1994
).
20.
J. L.
Fulton
and
M.
Balasubramanian
,
J. Am. Chem. Soc.
132
,
12597
(
2010
).
21.
J. L.
Fulton
 et al,
J. Phys. Chem. B
114
,
12926
(
2010
).
22.
P. J.
Merkling
 et al,
J. Chem. Phys.
119
,
6647
(
2003
).
23.
D. H.
Powell
,
G. W.
Neilson
, and
J. E.
Enderby
,
J. Phys.: Condens. Matter
5
,
5723
(
1993
).
24.
S.
Ramos
 et al,
Chem. Phys.
258
,
171
(
2000
).
25.
H.
Tanida
,
K.-i.
Kato
, and
I.
Watanabe
,
Bull. Chem. Soc. Jpn.
76
,
1735
(
2003
).
26.
H.
Tanida
,
H.
Sakane
, and
I.
Watanabe
,
J. Chem. Soc., Dalton Trans.
1994
,
2321
.
27.
H.
Tanida
and
I.
Watanabe
,
Bull. Chem. Soc. Jpn.
73
,
2747
(
2000
).
28.
I.
Watanabe
and
H.
Tanida
,
Anal. Sci.
11
,
525
(
1995
).
29.
V.
Krishnan
 et al,
Z. Phys. Chem.
218
,
1
(
2004
).
30.
J. J.
Rehr
and
R. C.
Albers
,
Rev. Mod. Phys.
72
,
621
(
2000
).
31.
B.
Santra
 et al,
Mol. Phys.
113
,
2829
(
2015
).
32.
J. R.
Schmidt
 et al,
Chem. Phys.
341
,
143
(
2007
).
33.
M.
Trumm
 et al,
J. Chem. Phys.
136
,
044509
(
2012
).
34.
E.
Pluhařová
 et al,
Mol. Phys.
112
,
1230
(
2014
).
35.
P.
D’Angelo
,
V.
Migliorati
, and
L.
Guidoni
,
Inorg. Chem.
49
,
4224
(
2010
).
36.
A. P.
Gaiduk
 et al,
Chem. Phys. Lett.
604
,
89
(
2014
).
37.
S.
Raugei
and
M. L.
Klein
,
J. Chem. Phys.
116
,
196
(
2002
).
38.
D. J.
Tobias
,
P.
Jungwirth
, and
M.
Parrinello
,
J. Chem. Phys.
114
,
7036
(
2001
).
39.
J.
VandeVondele
 et al,
J. Chem. Phys.
122
,
014515
(
2005
).
40.
G.
Tóth
,
J. Chem. Phys.
105
,
5518
(
1996
).
41.
L.
Perera
and
M. L.
Berkowitz
,
J. Chem. Phys.
95
,
1954
(
1991
).
42.
S. J.
Stuart
and
B. J.
Berne
,
J. Phys. Chem.
100
,
11934
(
1996
).
43.
P.
Jungwirth
and
D. J.
Tobias
,
J. Phys. Chem. B
104
,
7702
(
2000
).
44.
P.
Jungwirth
and
D. J.
Tobias
,
Chem. Rev.
106
,
1259
(
2006
).
45.
P.
Jungwirth
and
D. J.
Tobias
,
J. Phys. Chem. B
106
,
6361
(
2002
).
46.
C. D.
Wick
and
S. S.
Xantheas
,
J. Phys. Chem. B
113
,
4141
(
2009
).
47.
J. E.
Combariza
,
N. R.
Kestner
, and
J.
Jortner
,
Chem. Phys. Lett.
221
,
156
(
1994
).
48.
J. M.
Heuft
and
E. J.
Meijer
,
J. Chem. Phys.
119
,
11788
(
2003
).
49.
J. L.
Fulton
 et al,
J. Chem. Phys.
125
,
094507
(
2006
).
50.
C.
Zhang
 et al,
J. Chem. Phys.
138
,
181102
(
2013
).
51.
L. X.
Dang
 et al,
J. Phys. Chem. B
110
,
23644
(
2006
).
52.
A.
Tongraar
 et al,
Phys. Chem. Chem. Phys.
12
,
10876
(
2010
).
53.
V.
Migliorati
 et al,
J. Chem. Phys.
141
,
044509
(
2014
).
54.
V. T.
Pham
 et al,
Chem. Phys.
371
,
24
(
2010
).
55.
B.
Viswanathan
,
C. J.
Barden
, and
R. J.
Boyd
,
Mol. Phys.
104
,
389
(
2006
).
56.
S.
Ghosal
 et al,
Science
307
,
563
(
2005
).
57.
L.
Piatkowski
 et al,
Nat. Commun.
5
,
4083
(
2014
).
58.
Y.
Hiranuma
 et al,
J. Phys. Chem. A
115
,
8493
(
2011
).
59.
M.
Shoji
 et al,
J. Phys. Chem. A
115
,
2148
(
2011
).
60.
M.
Benfatto
,
S.
Della Longa
, and
P.
D’Angelo
,
AIP Conf. Proc.
652
,
362
(
2003
).
61.
M.
Benfatto
,
S.
Della Longa
, and
P.
D’Angelo
,
Phys. Scr.
2005
(
T115
),
28
.
62.
S.
Della Longa
 et al,
Phys. Rev. Lett.
87
,
155501
(
2001
).
63.
C. R.
Natoli
 et al,
J. Synchrotron Radiat.
10
,
26
(
2003
).
64.
J.
Chaboy
,
M.
Benfatto
, and
I.
Davoli
,
Phys. Rev. B
52
,
10014
(
1995
).
65.
M.
Benfatto
 et al,
Biophys. Chem.
110
,
191
(
2004
).
66.
A.
Zitolo
and
P.
D’Angelo
,
Chem. Phys. Lett.
499
,
113
(
2010
).
67.
P.
Frank
 et al,
Inorg. Chem.
47
,
4126
(
2008
).
68.
P.
Frank
 et al,
Inorg. Chem.
51
,
2086
(
2012
).
69.
P.
Frank
 et al,
J. Chem. Phys.
142
,
084310
(
2015
).
70.
P.
Frank
 et al,
Inorg. Chem.
44
,
1922
(
2005
).
71.
E.
Anxolabéhère-Mallart
 et al,
J. Am. Chem. Soc.
123
,
5444
(
2001
).
72.
R.
Sarangi
 et al,
J. Chem. Phys.
137
,
205103
(
2012
).
73.
A.
Tenderholt
,
B.
Hedman
, and
K. O.
Hodgson
, in
X-ray Absorption Fine Structure-XAFS13
, edited by
B.
Hedman
and
P.
Pianetta
(
American Institute of Physics, Stanford University
,
2007
), p.
105
.
74.
J. J.
Rehr
 et al,
J. Am. Chem. Soc.
113
,
5135
(
1991
).
75.
S. I.
Zabinsky
 et al,
Phys. Rev. B
52
,
2995
(
1995
).
76.
L. A.
Bugaev
 et al,
Phys. Rev. B
82
,
064204
(
2010
).
77.
C. R.
Natoli
,
M.
Benfatto
, and
S.
Doniach
,
Phys. Rev. A
34
,
4682
(
1986
).
78.
M.
Benfatto
and
S.
Della-Longa
,
J. Phys.: Conf. Ser.
190
,
012031
(
2009
).
79.
A.
Michalowicz
 et al,
J. Synchrotron Radiat.
6
,
233
(
1999
).
80.
E. A.
Stern
,
Phys. Rev. B
48
,
9825
(
1993
).
81.
D. E.
Sayers
, “
Error Reporting Recommendations: A Report of the Standards and Criteria Committee
” (
International X-ray Absorption Society
,
2000
), p.
1
.
82.
S.
Pronk
 et al,
Bioinformatics
29
,
845
(
2013
).
83.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
84.
W. L.
Jorgensen
 et al,
J. Chem. Phys.
79
,
926
(
1983
).
85.
M. W.
Mahoney
and
W. L.
Jorgensen
,
J. Chem. Phys.
112
,
8910
(
2000
).
86.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
87.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
88.
M. M.
Reif
and
P. H.
Hünenberger
,
J. Chem. Phys.
134
,
144104
(
2011
).
89.
N.
Schmid
 et al,
Eur. Biophys. J.
40
,
843
(
2011
).
90.
M.
Levitt
,
J. Mol. Biol.
168
,
595
(
1983
).
91.
M. O.
Krause
and
H. H.
Oliver
,
J. Phys. Chem. Ref. Data
8
,
329
(
1979
).
92.
M.
Maeda
and
H.
Ohtaki
,
Bull. Chem. Soc. Jpn.
48
,
3755
(
1975
).
93.
A. K.
Soper
and
K.
Weckström
,
Biophys. Chem.
124
,
180
(
2006
).
94.
J. E.
Del Bene
,
J. Phys. Chem.
92
,
2874
(
1988
).
95.
G. K. H.
Madsen
 et al,
J. Phys. Chem. A
103
,
8684
(
1999
).
97.
A.
Ranganathan
,
G. U.
Kulkarni
, and
C. N. R.
Rao
,
J. Phys. Chem. A
107
,
6073
(
2003
).
98.
A.
Filipponi
 et al,
Phys. Rev. Lett.
91
,
165505
(
2003
).
99.
R. W.
Impey
,
P. A.
Madden
, and
I. R.
McDonald
,
J. Phys. Chem.
87
,
5071
(
1983
).
100.
P.
Bopp
, in
The Physics and Chemistry of Aqueous Ionic Solutions
, edited by
M. C.
Bellissent-Funel
and
G. W.
Neilson
(
Springer
,
Netherlands
,
1987
), p.
217
.
101.
A. E.
Aliev
 et al,
Proteins
82
,
195
(
2014
).
102.
S.
Piana
,
K.
Lindorff-Larsen
, and
D. E.
Shaw
,
Biophys. J.
100
,
L47
(
2011
).
103.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
104.
J. A.
Lemkul
 et al,
J. Comput. Chem.
36
,
1473
(
2015
).
105.
H.
Yu
 et al,
J. Chem. Theory Comput.
6
,
774
(
2010
).
106.
P. T.
Kiss
and
A.
Baranyai
,
J. Chem. Phys.
137
,
194103
(
2012
).
107.
M.
Benfatto
 et al,
Phys. Rev. B
56
,
2447
(
1997
).
108.
M.
Arshadi
,
R.
Yamdagni
, and
P.
Kebarle
,
J. Phys. Chem.
74
,
1475
(
1970
).
109.
P.
Kebarle
,
M.
Arshadi
, and
J.
Scarborough
,
J. Chem. Phys.
49
,
817
(
1968
).
110.
R. G.
Keesee
and
A.
Castleman
,
Chem. Phys. Lett.
74
,
139
(
1980
).
111.
Y. I.
Neela
,
A. S.
Mahadevi
, and
G. N.
Sastry
,
J. Phys. Chem. B
114
,
17162
(
2010
).
112.
H.
Coker
,
J. Phys. Chem.
80
,
2078
(
1976
).
113.
R. C.
DeMille
and
V.
Molinero
,
J. Chem. Phys.
131
,
034107
(
2009
).
114.
J. M.
Heuft
and
E. J.
Meijer
,
J. Chem. Phys.
123
,
094506
(
2005
).
115.
A.
Ignaczak
,
J. A. N. F.
Gomes
, and
M. N. D. S.
Cordeiro
,
Electrochim. Acta
45
,
659
(
1999
).
116.
L.
Perera
and
M. L.
Berkowitz
,
J. Chem. Phys.
96
,
8288
(
1992
).
117.
Z.
Zhao
,
D. M.
Rogers
, and
T. L.
Beck
,
J. Chem. Phys.
132
,
014502
(
2010
).
118.
E. M.
Knipping
 et al,
Science
288
,
301
(
2000
).
119.
S. I.
Lukyanov
,
Z. S.
Zidi
, and
S. V.
Shevkunov
,
J. Mol. Struct.: THEOCHEM
725
,
191
(
2005
).
120.
L. X.
Dang
,
J. Phys. Chem. B
106
,
10388
(
2002
).
121.
L. X.
Dang
and
T.-M.
Chang
,
J. Phys. Chem. B
106
,
235
(
2002
).
122.
P.
Jungwirth
and
D. J.
Tobias
,
J. Phys. Chem. B
105
,
10468
(
2001
).
123.
D. H.
Herce
 et al,
J. Chem. Phys.
122
,
024513
(
2005
).
124.
D.
Horinek
 et al,
Chem. Phys. Lett.
479
,
173
(
2009
).
125.
C.
Caleman
 et al,
Proc. Natl. Acad. Sci. U. S. A.
108
,
6838
(
2011
).
126.
S. G.
Neogi
and
P.
Chaudhury
,
J. Comput. Chem.
34
,
471
(
2013
).
127.
J. E.
Combariza
,
N. R.
Kestner
, and
J.
Jortner
,
Chem. Phys. Lett.
203
,
423
(
1993
).
128.
See supplementary material at http://dx.doi.org/10.1063/1.4959589 for information on (i) Normalized FT spectra of chloride, bromide, and iodide; (ii) EXAFS structural parameter search for iodide or bromide solvation; (iii) MXAN fits for bromide CN = 4, 6, 7, 8, or 10 water molecules; (iv) MXAN CN = 6 or 7 bromide solvation models; (v) EXAFS structural parameter search for chloride solvation; (vi) Cl K-edge EXAFS fit using 6, 7 (6,1), or 8 (6,1,1) oxygen scatterers; (vii) EXAFS metrics for homologous CN = 8 or 9 chloride models; (viii) EXAFS metrics for best CN = 7 or 8 chloride solvation models; (ix) MXAN CN = 6, 7, or 8 single shell fits to the chloride K-edge XAS; (x) MXAN CN = 6, 7, or 8 initial and final chloride single-shell models; (xi) MXAN fit to chloride XAS employing the two-shell solvation model; (xii) MD structural XAS using the HE, ME, or LEversions of the L-J potential; (xiii) Radial distribution and CNs of Cl–O for LE, HE, and MEL-J Potentials; (xiv) MD structural XAS using the GROMOS96 L-J potential; (xv) MD GROMOS96 L-J Cl–O RDF after the Rth filter; (xvi) MD rdfs, AMBER potential, SPC/E and TIP3P water models; (xvii) MD rdfs CHARMM potential, SPC/E, +ENCAD, TIP5P water models; (xviii) MD rdfs OPLS, CHARMM, GROMOS96,and AMBER potentials; (xix) MD rdfs GROMOS96 and polarization potentials; (xx) D-MXAN XANES from CHARMM potential and SPC/E water model; (xxi) D-MXAN XANES from CHARMM, +ENCAD shift and SPC/E; (xxii) D-MXAN XANES from CHARMM, +ENCAD shift and TIP5P; (xxiii) D-MXAN XANES from Gromacs polarization scheme; (xxiv) MD Scheme XANES Goodness of Fit; (xxv) EXAFS attenuation with mean back-scatterer displacement; (xxvi) Cl–H and Cl–O g(r)s from neutron diffraction. PDB file of each of the three final halide XAS solvation models: chloride, Chloride_14_water.pdb; bromide, Bromide_8_water.pdb; and iodide, Iodide_8_water.pdb.

Supplementary Material

You do not currently have access to this content.