We report a transient infrared (IR) absorption spectrum of the simplest deuterated Criegee intermediate CD2OO recorded using a step-scan Fourier-transform spectrometer coupled with a multipass absorption cell. CD2OO was produced from photolysis of flowing mixtures of CD2I2, N2, and O2 (13 or 87 Torr) with laser light at 308 nm. The recorded spectrum shows close structural similarity with the spectrum of CH2OO reported previously [Y.-T. Su et al., Science 340, 174 (2013)]. The four bands observed at 852, 1017, 1054, and 1318 cm−1 are assigned to the OO stretching mode, two distinct in-plane OCD bending modes, and the CO stretching mode of CD2OO, respectively, according to vibrational wavenumbers, IR intensities, rotational contours, and deuterium-isotopic shifts predicted with extensive quantum-chemical calculations. The CO-stretching mode of CD2OO at 1318 cm−1 is blue shifted from the corresponding band of CH2OO at 1286 cm−1; this can be explained by a mechanism based on mode mixing and isotope substitution. A band near 936 cm−1, observed only at higher pressure (87 Torr), is tentatively assigned to the CD2 wagging mode of CD2IOO.

1.
R.
Criegee
and
G.
Wenner
,
Justus Liebigs Ann. Chem.
564
,
9
(
1949
).
2.
W. H.
Bunnelle
,
Chem. Rev.
91
,
335
(
1991
).
3.
S.
Hatakeyama
and
H.
Akimoto
,
Res. Chem. Intermed.
20
,
503
(
1994
).
4.
O.
Horie
and
G. K.
Moortgat
,
Acc. Chem. Res.
31
,
387
(
1998
).
5.
D.
Johnson
and
G.
Marston
,
Chem. Soc. Rev.
37
,
699
(
2008
).
6.
O.
Welz
,
J. D.
Savee
,
D. L.
Osborn
,
S. S.
Vasu
,
C. J.
Percival
,
D. E.
Shallcross
, and
C. A.
Taatjes
,
Science
335
,
204
(
2012
).
7.
C. A.
Taatjes
,
O.
Welz
,
A. J.
Eskola
,
J. D.
Savee
,
A. M.
Scheer
,
D. E.
Shallcross
,
B.
Rotavera
,
E. P. F.
Lee
,
J. M.
Dyke
,
D. K. W.
Mok
,
D. L.
Osborn
, and
C. J.
Percival
,
Science
340
,
177
(
2013
).
8.
F.
Liu
,
J. M.
Beames
,
A. M.
Green
, and
M. I.
Lester
,
J. Phys. Chem. A
118
,
2298
(
2014
).
9.
C. A.
Taatjes
,
D. E.
Shallcross
, and
C. J.
Percival
,
Phys. Chem. Chem. Phys.
16
,
1704
(
2014
).
10.
Y.-P.
Lee
,
J. Chem. Phys.
143
,
020901
(
2015
).
11.
D. L.
Osborn
and
C. A.
Taatjes
,
Int. Rev. Phys. Chem.
34
,
309
(
2015
).
12.
J. M.
Beames
,
F.
Liu
,
L.
Lu
, and
M. I.
Lester
,
J. Am. Chem. Soc.
134
,
20045
(
2012
).
13.
L.
Sheps
,
J. Phys. Chem. Lett.
4
,
4201
(
2013
).
14.
W.-L.
Ting
,
Y.-H.
Chen
,
W.
Chao
,
M. C.
Smith
, and
J. J.-M.
Lin
,
Phys. Chem. Chem. Phys.
16
,
10438
(
2014
).
15.
Y.-T.
Su
,
Y.-H.
Huang
,
H. A.
Witek
, and
Y.-P.
Lee
,
Science
340
,
174
(
2013
).
16.
Y.-H.
Huang
,
J.
Li
,
H.
Guo
, and
Y.-P.
Lee
,
J. Chem. Phys.
142
,
214301
(
2015
).
17.
M.
Nakajima
and
Y.
Endo
,
J. Chem. Phys.
139
,
101103
(
2013
).
18.
M. C.
McCarthy
,
L.
Cheng
,
K. N.
Crabtree
,
O.
Martinez
,
T. L.
Nguyen
,
C. C.
Womack
, and
J. F.
Stanton
,
J. Phys. Chem. Lett.
4
,
4133
(
2013
).
19.
M.
Nakajima
,
Q.
Yue
,
J.
Li
,
H.
Guo
, and
Y.
Endo
,
Chem. Phys. Lett.
621
,
129
(
2015
).
20.
A. M.
Daly
,
B. J.
Drouin
, and
S.
Yu
,
J. Mol. Spectrosc.
297
,
16
(
2014
).
21.
W.-L.
Ting
,
C.-H.
Chang
,
Y.-F.
Lee
,
H.
Matsui
,
Y.-P.
Lee
, and
J. J.-M.
Lin
,
J. Chem. Phys.
141
,
104308
(
2014
).
22.
Z. J.
Buras
,
R. M. I.
Elsamra
, and
W. H.
Green
,
J. Phys. Chem. Lett.
5
,
2224
(
2014
).
23.
R.
Chhantyal-Pun
,
A.
Davey
,
D. E.
Shallcross
,
C. J.
Percival
, and
A. J.
Orr-Ewing
,
Phys. Chem. Chem. Phys.
17
,
3617
(
2015
).
24.
D.
Stone
,
M.
Blitz
,
L.
Daubney
,
N. U. M.
Howes
, and
P.
Seakins
,
Phys. Chem. Chem. Phys.
16
,
1139
(
2014
).
25.
Y.
Liu
,
K. D.
Bayes
, and
S. P.
Sander
,
J. Phys. Chem. A
118
,
741
(
2014
).
26.
T.
Berndt
,
T.
Jokinen
,
M.
Sipilä
,
R. L.
Mauldin III
,
H.
Herrmann
,
F.
Stratmann
,
H.
Junninen
, and
M.
Kulmala
,
Atmos. Environ.
89
,
603
(
2014
).
27.
W.
Chao
,
J.-T.
Hsieh
,
C.-H.
Chang
, and
J. J.-M.
Lin
,
Science
347
,
751
(
2015
).
28.
T. R.
Lewis
,
M.
Blitz
,
D. E.
Heard
, and
P.
Seakins
,
Phys. Chem. Chem. Phys.
17
,
4859
(
2015
).
29.
O.
Welz
,
A. J.
Eskola
,
L.
Sheps
,
B.
Rotavera
,
J. D.
Savee
,
A. M.
Scheer
,
D. L.
Osborn
,
D.
Lowe
,
A.
Murray Booth
,
P.
Xiao
,
M. A. H.
Khan
,
C. J.
Percival
,
D. E.
Shallcross
, and
C. A.
Taatjes
,
Angew. Chem., Int. Ed.
53
,
4547
(
2014
).
30.
J. C.
Mössinger
,
D. E.
Shallcross
, and
R. A.
Cox
,
J. Chem. Soc., Faraday Trans.
94
,
1391
(
1998
).
31.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J. P.
Malrieu
,
J. Chem. Phys.
114
,
10252
(
2001
).
32.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
WIREs Comput. Mol. Sci.
2
,
242
(
2012
).
33.
G.
Rauhut
and
T.
Hrenar
,
Chem. Phys.
346
,
160
(
2008
).
34.
G.
Rauhut
,
J. Chem. Phys.
121
,
9313
(
2004
).
35.
M.
Neff
and
G.
Rauhut
,
J. Chem. Phys.
131
,
124129
(
2009
).
36.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
37.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
38.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., gaussian 09, version 7.0, Gaussian, Inc., Wallingford, CT,
2009
.
39.
V.
Barone
,
J. Chem. Phys.
122
,
014108
(
2005
).
40.
K. A.
Peterson
,
D.
Figgen
,
E.
Goll
,
H.
Stoll
, and
M.
Dolg
,
J. Chem. Phys.
119
,
11113
(
2003
).
41.
Y.-H.
Huang
,
L.-W.
Chen
, and
Y.-P.
Lee
,
J. Phys. Chem. Lett.
6
,
4610
(
2015
).
42.
T.
Shimanouchi
,
Tables of Molecular Vibrational Frequencies Consolidated, Volume I
(
National Bureau of Standards
,
1972
).
43.
See supplementary material at http://dx.doi.org/10.1063/1.4958932 for comparison of vibrational wavenumbers, IR intensities, and ratios of rotational parameters in their ground and vibrationally excited states for vibrational modes ofgauche-CD2IOO.
44.
C. M.
Western
, PGopher, a Program for Simulating Rotational, Vibrational and Electronic Structure, version 8.0.282, University of Bristol Research Data Repository, 2014, .

Supplementary Material

You do not currently have access to this content.