In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures, Redfield theory still provides a numerically efficient alternative to NeMoR theory. At higher temperatures, we suggest to use NeMoR theory, because it has the same numerical costs as modified Redfield theory, but is more accurate.

1.
G. D.
Scholes
,
G. R.
Fleming
,
A.
Olaya-Castro
, and
R.
van Grondelle
,
Nat. Chem.
3
,
763
(
2011
).
2.
R.
Croce
and
H.
van Amerongen
,
Nat. Chem. Biol.
10
,
492
(
2014
).
3.
T.
Renger
and
F.
Müh
,
Phys. Chem. Chem. Phys.
15
,
3348
(
2013
).
4.
T.
Renger
,
A.
Klinger
,
F.
Steinecker
,
M.
Schmidt am Busch
,
J.
Numata
, and
F.
Müh
,
J. Phys. Chem. B
116
,
14565
(
2012
).
5.
T.
Renger
and
R. A.
Marcus
,
J. Chem. Phys.
116
,
9997
(
2002
).
6.
T.-C.
Dinh
and
T.
Renger
,
J. Chem. Phys.
142
,
034104
(
2015
).
7.
A.
Warshel
,
Z. T.
Chu
, and
W. W.
Parson
,
Science
246
,
112
(
1989
).
8.
Y.
Georgievskii
,
C.-P.
Hsu
, and
R. A.
Marcus
,
J. Chem. Phys.
110
,
5307
(
1999
).
9.
R.
Kubo
and
Y.
Toyozawa
,
Prog. Theor. Phys.
13
,
160
(
1955
).
10.
M.
Lax
,
J. Chem. Phys.
20
,
1752
(
1952
).
11.
W. M.
Zhang
,
T.
Meier
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
108
,
7763
(
1998
).
12.
K.
Ohta
,
M.
Yang
, and
G. R.
Fleming
,
J. Chem. Phys.
115
,
7609
(
2001
).
13.
T.
Renger
,
I.
Trostmann
,
C.
Theiss
,
M. E.
Madjet
,
M.
Richter
,
H.
Paulsen
,
H. J.
Eichler
,
A.
Knorr
, and
G.
Renger
,
J. Phys. Chem. B
111
,
10487
(
2007
).
14.
J.
Adolphs
,
M.
Berrer
, and
T.
Renger
,
J. Am. Chem. Soc.
138
,
2993
(
2016
).
15.
G.
Raszewski
,
W.
Saenger
, and
T.
Renger
,
Biophys. J.
88
,
986
(
2005
).
16.
J.
Adolphs
and
T.
Renger
,
Biophys. J.
91
,
2778
(
2006
).
17.
M.
Yang
and
G. R.
Fleming
,
Chem. Phys.
275
,
355
(
2002
).
18.
T.
Renger
and
R. A.
Marcus
,
J. Phys. Chem. A
107
,
8404
(
2003
).
19.
V.
Novoderezhkin
,
M. A.
Palacios
,
H.
van Amerongen
, and
R.
van Grondelle
,
J. Phys. Chem. B
108
,
10363
(
2004
).
20.
V.
Novoderezhkin
,
D.
Rutkauskas
, and
R.
van Grondelle
,
Biophys. J.
90
,
2890
(
2006
).
21.
V.
Novoderezhkin
,
J. P.
Dekker
, and
R.
van Grondelle
,
Biophys. J.
93
,
1293
(
2007
).
22.
V.
Novoderezhkin
,
A. B.
Doust
,
C.
Curutchet
,
G. D.
Scholes
, and
R.
van Grondelle
,
Biophys. J.
99
,
344
(
2010
).
23.
M.
Schröder
,
U.
Kleinekathöfer
, and
M.
Schreiber
,
J. Chem. Phys.
124
,
084903
(
2006
).
24.
B.
Hein
,
C.
Kreisbeck
,
T.
Kramer
, and
M.
Rodriguez
,
New J. Phys.
14
,
023018
(
2012
).
25.
A.
Gelzinis
,
D.
Abramavicius
, and
L.
Valkunas
,
J. Chem. Phys.
142
,
154107
(
2015
).
26.
J. M.
Moix
,
J.
Ma
, and
J. S.
Cao
,
J. Chem. Phys.
142
,
094108
(
2015
).
27.
A.
Ishizaki
and
Y.
Tanimura
,
J. Phys. Soc. Jpn.
74
,
3131
(
2005
).
28.
A.
Ishizaki
and
G. R.
Fleming
,
J. Chem. Phys.
130
,
234111
(
2009
).
29.
T.
Mancal
,
L.
Valkunas
, and
G. R.
Fleming
,
Chem. Phys. Lett.
432
,
301
(
2006
).
30.
J.
Olsina
,
T.
Kramer
,
C.
Kreisbeck
, and
T.
Mancal
,
J. Chem. Phys.
141
,
164109
(
2014
).
31.
M.
Schröder
,
U.
Kleinekathöfer
, and
M.
Schreiber
,
J. Lumin.
125
,
126
(
2006
).
32.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems: A Theoretical Introduction
(
Wiley–VCH
,
Berlin
,
2011
).
33.
H.
Haken
,
Quantum Field Theory of Solids: An Introduction
(
North Holland
,
Amsterdam
,
1976
).
34.
C.
Kreisbeck
and
T.
Kramer
,
J. Phys. Chem. Lett.
3
,
2828
(
2012
).
35.
R. M.
Wilcox
,
J. Math. Phys.
8
,
962
(
1967
).

Supplementary Material

You do not currently have access to this content.