In a joint theoretical and experimental work, the optical properties of azobenzene-functionalized self-assembled monolayers (SAMs) are studied at different molecular packing densities. Our results, based on density-functional and many-body perturbation theory, as well as on differential reflectance (DR) spectroscopy, shed light on the microscopic mechanisms ruling photo-absorption in these systems. While the optical excitations are intrinsically excitonic in nature, regardless of the molecular concentration, in densely packed SAMs intermolecular coupling and local-field effects are responsible for a sizable weakening of the exciton binding strength. Through a detailed analysis of the character of the electron-hole pairs, we show that distinct excitations involved in the photo-isomerization at low molecular concentrations are dramatically broadened by intermolecular interactions. Spectral shifts in the calculated DR spectra are in good agreement with the experimental results. Our findings represent an important step forward to rationalize the excited-state properties of these complex materials.

1.
W. R.
Browne
and
B. L.
Feringa
,
Nat. Nanotechnol.
1
,
25
(
2006
).
2.
V.
Balzani
,
A.
Credi
, and
M.
Venturi
,
ChemPhysChem
9
,
202
(
2008
).
3.
M.-M.
Russew
and
S.
Hecht
,
Adv. Mater.
22
,
3348
(
2010
).
4.
N.
Fuentes
,
A.
Martín-Lasanta
,
L. A.
de Cienfuegos
,
M.
Ribagorda
,
A.
Parra
, and
J. M.
Cuerva
,
Nanoscale
3
,
4003
(
2011
).
5.
P.
Tegeder
,
J. Phys.: Condens. Matter
24
,
394001
(
2012
).
6.
J. M.
Abendroth
,
O. S.
Bushuyev
,
P. S.
Weiss
, and
C. J.
Barrett
,
ACS Nano
9
,
7746
(
2015
).
7.
H.
Wolf
,
H.
Ringsdorf
,
E.
Delamarche
,
T.
Takami
,
H.
Kang
,
B.
Michel
,
C.
Gerber
,
M.
Jaschke
,
H.-J.
Butt
, and
E.
Bamberg
,
J. Phys. Chem.
99
,
7102
(
1995
).
8.
J.
Zhang
,
J.
Zhao
,
H.
Zhang
,
H.
Li
, and
Z.
Liu
,
Chem. Phys. Lett.
271
,
90
(
1997
).
9.
S.
Yasuda
,
T.
Nakamura
,
M.
Matsumoto
, and
H.
Shigekawa
,
J. Am. Chem. Soc.
125
,
16430
(
2003
).
10.
N.
Delorme
,
J.-F.
Bardeau
,
A.
Bulou
, and
F.
Poncin-Epaillard
,
Langmuir
21
,
12278
(
2005
).
11.
A. S.
Kumar
,
T.
Ye
,
T.
Takami
,
B.-C.
Yu
,
A. K.
Flatt
,
J. M.
Tour
, and
P. S.
Weiss
,
Nano Lett.
8
,
1644
(
2008
).
12.
R.
Klajn
,
Pure Appl. Chem.
82
,
2247
(
2010
).
13.
C.
Gahl
,
R.
Schmidt
,
D.
Brete
,
E. R.
McNellis
,
W.
Freyer
,
R.
Carley
,
K.
Reuter
, and
M.
Weinelt
,
J. Am. Chem. Soc.
132
,
1831
(
2010
).
14.
D. T.
Valley
,
M.
Onstott
,
S.
Malyk
, and
A. V.
Benderskii
,
Langmuir
29
,
11623
(
2013
).
15.
G.
Pace
,
V.
Ferri
,
C.
Grave
,
M.
Elbing
,
C.
von Hänisch
,
M.
Zharnikov
,
M.
Mayor
,
M. A.
Rampi
, and
P.
Samorì
,
Proc. Natl. Acad. Sci. U. S. A.
104
,
9937
(
2007
).
16.
U.
Jung
,
O.
Filinova
,
S.
Kuhn
,
D.
Zargarani
,
C.
Bornholdt
,
R.
Herges
, and
O.
Magnussen
,
Langmuir
26
,
13913
(
2010
).
17.
U.
Jung
,
C.
Schütt
,
O.
Filinova
,
J.
Kubitschke
,
R.
Herges
, and
O.
Magnussen
,
J. Phys. Chem. C
116
,
25943
(
2012
).
18.
H.
Jacob
,
S.
Ulrich
,
U.
Jung
,
S.
Lemke
,
T.
Rusch
,
C.
Schütt
,
F.
Petersen
,
T.
Strunskus
,
O.
Magnussen
,
R.
Herges
, and
F.
Tuczek
,
Phys. Chem. Chem. Phys.
16
,
22643
(
2014
).
19.
S.
Evans
,
S.
Johnson
,
H.
Ringsdorf
,
L.
Williams
, and
H.
Wolf
,
Langmuir
14
,
6436
(
1998
).
20.
T.
Nagahiro
,
H.
Akiyama
,
M.
Hara
, and
K.
Tamada
,
J. Electron Spectrosc. Relat. Phenom.
172
,
128
(
2009
).
21.
T.
Moldt
,
D.
Brete
,
D.
Przyrembel
,
S.
Das
,
J. R.
Goldman
,
P. K.
Kundu
,
C.
Gahl
,
R.
Klajn
, and
M.
Weinelt
,
Langmuir
31
,
1048
(
2015
).
22.
T.
Moldt
,
D.
Przyrembel
,
M.
Schulze
,
W.
Bronsch
,
L.
Boie
,
D.
Brete
,
C.
Gahl
,
R.
Klajn
,
P.
Tegeder
, and
M.
Weinelt
,
Langmuir
32
,
10795
(
2016
).
23.
M.
Utecht
,
T.
Klamroth
, and
P.
Saalfrank
,
Phys. Chem. Chem. Phys.
13
,
21608
(
2011
).
24.
E.
Benassi
and
S.
Corni
,
J. Phys. Chem. C
117
,
25026
(
2013
).
25.
E.
Benassi
and
S.
Corni
,
J. Phys. Chem. C
118
,
25906
(
2014
).
26.
V.
Cantatore
,
G.
Granucci
,
G.
Rousseau
,
G.
Padula
, and
M.
Persico
,
J. Phys. Chem. Lett.
7
,
4027
(
2016
).
27.
M.
Jaschke
,
H.
Schönherr
,
H.
Wolf
,
H.-J.
Butt
,
E.
Bamberg
,
M. K.
Besocke
, and
H.
Ringsdorf
,
J. Phys. Chem.
100
,
2290
(
1996
).
28.
S.
Mannsfeld
,
T. W.
Canzler
,
T.
Fritz
,
H.
Proehl
,
K.
Leo
,
S.
Stumpf
,
G.
Goretzki
, and
K.
Gloe
,
J. Phys. Chem. B
106
,
2255
(
2002
).
29.

For the reciprocal-space representation of an orthorhombic unit cell and the identification of the corresponding high-symmetry points, we refer to the Bilbao Crystallographic Server (Ref. 65).

30.
A.
Gulans
,
S.
Kontur
,
C.
Meisenbichler
,
D.
Nabok
,
P.
Pavone
,
S.
Rigamonti
,
S.
Sagmeister
,
U.
Werner
, and
C.
Draxl
,
J. Phys.: Condens. Matter
26
,
363202
(
2014
).
32.
M. S.
Hybertsen
and
S. G.
Louie
,
Phys. Rev. Lett.
55
,
1418
(
1985
).
33.
W.
Hanke
and
L. J.
Sham
,
Phys. Rev. B
21
,
4656
(
1980
).
34.
G.
Strinati
,
Riv. Nuovo Cimento
11
,
1
(
1988
).
35.
D.
Hirose
,
Y.
Noguchi
, and
O.
Sugino
,
Phys. Rev. B
91
,
205111
(
2015
).
36.
D.
Jacquemin
,
I.
Duchemin
, and
X.
Blase
,
J. Chem. Theory Comput.
11
,
5340
(
2015
).
37.
C.
Cocchi
and
C.
Draxl
,
Phys. Rev. B
92
,
205126
(
2015
).
38.
F.
Bruneval
,
S. M.
Hamed
, and
J. B.
Neaton
,
J. Chem. Phys.
142
,
244101
(
2015
).
39.
A.
Ruini
,
M. J.
Caldas
,
G.
Bussi
, and
E.
Molinari
,
Phys. Rev. Lett.
88
,
206403
(
2002
).
40.
P.
Puschnig
and
C.
Ambrosch-Draxl
,
Phys. Rev. Lett.
89
,
056405
(
2002
).
41.
K.
Hummer
,
P.
Puschnig
, and
C.
Ambrosch-Draxl
,
Phys. Rev. Lett.
92
,
147402
(
2004
).
42.
K.
Hummer
and
C.
Ambrosch-Draxl
,
Phys. Rev. B
71
,
081202(R)
(
2005
).
43.
M.
Rohlfing
and
S. G.
Louie
,
Phys. Rev. B
62
,
4927
(
2000
).
44.
P.
Puschnig
and
C.
Ambrosch-Draxl
,
Phys. Rev. B
66
,
165105
(
2002
).
45.
S.
Sagmeister
and
C.
Ambrosch-Draxl
,
Phys. Chem. Chem. Phys.
11
,
4451
(
2009
).
46.
J. P.
Perdew
and
Y.
Wang
,
Phys. Rev. B
45
,
13244
(
1992
).
47.
D.
Nabok
,
A.
Gulans
, and
C.
Draxl
,
Phys. Rev. B
94
,
035118
(
2016
).
49.
P.
Puschnig
and
C.
Ambrosch-Draxl
,
Adv. Eng. Mater.
8
,
1151
(
2006
).
50.
C.
Vorwerk
,
C.
Cocchi
, and
C.
Draxl
,
Comput. Phys. Commun.
201
,
119
(
2016
).
51.
C. R.
Crecca
and
A. E.
Roitberg
,
J. Phys. Chem. A
110
,
8188
(
2006
).
52.
I.
Conti
,
M.
Garavelli
, and
G.
Orlandi
,
J. Am. Chem. Soc.
130
,
5216
(
2008
).
53.
R. J.
Maurer
and
K.
Reuter
,
J. Chem. Phys.
135
,
224303
(
2011
).
54.
H.
Rau
and
E.
Lueddecke
,
J. Am. Chem. Soc.
104
,
1616
(
1982
).
55.
P.
Cattaneo
and
M.
Persico
,
Phys. Chem. Chem. Phys.
1
,
4739
(
1999
).
56.
P.-O.
Åstrand
,
P.
Ramanujam
,
S.
Hvilsted
,
K. L.
Bak
, and
S. P.
Sauer
,
J. Am. Chem. Soc.
122
,
3482
(
2000
).
57.
H.
Fliegl
,
A.
Köhn
,
C.
Hättig
, and
R.
Ahlrichs
,
J. Am. Chem. Soc.
125
,
9821
(
2003
).
58.
F.
Bruneval
and
M. A.
Marques
,
J. Chem. Theory Comput.
9
,
324
(
2012
).
59.
N.
Marom
,
F.
Caruso
,
X.
Ren
,
O. T.
Hofmann
,
T.
Körzdörfer
,
J. R.
Chelikowsky
,
A.
Rubio
,
M.
Scheffler
, and
P.
Rinke
,
Phys. Rev. B
86
,
245127
(
2012
).
60.
P.
Hahn
,
W. G.
Schmidt
,
K.
Seino
,
M.
Preuss
,
F.
Bechstedt
, and
J.
Bernholc
,
Phys. Rev. Lett.
94
,
037404
(
2005
).
61.
A.
Hermann
,
W.
Schmidt
, and
P.
Schwerdtfeger
,
Phys. Rev. Lett.
100
,
207403
(
2008
).
62.
A.
Hermann
and
P.
Schwerdtfeger
,
Phys. Rev. Lett.
106
,
187403
(
2011
).
63.
C.
Cocchi
and
C.
Draxl
,
Phys. Rev. B
92
,
205105
(
2015
).
64.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic Press
,
1998
), Vol. 3.
65.
M. I.
Aroyo
,
D.
Orobengoa
,
G.
de la Flor
,
E. S.
Tasci
,
J. M.
Perez-Mato
, and
H.
Wondratschek
,“
Brillouin-zone database on the Bilbao Crystallographic Server
,”
Acta Cryst. A
70
,
126
-
137
(
2014
).
You do not currently have access to this content.