Thermal properties of solid-state materials are a fundamental topic of study with important practical implications. For example, anisotropic displacement parameters (ADPs) are routinely used in physics, chemistry, and crystallography to quantify the thermal motion of atoms in crystals. ADPs are commonly derived from diffraction experiments, but recent developments have also enabled their first-principles prediction using periodic density-functional theory (DFT). Here, we combine experiments and dispersion-corrected DFT to quantify lattice thermal expansion and ADPs in crystalline α-sulfur (S8), a prototypical elemental solid that is controlled by the interplay of covalent and van der Waals interactions. We begin by reporting on single-crystal and powder X-ray diffraction measurements that provide new and improved reference data from 10 K up to room temperature. We then use several popular dispersion-corrected DFT methods to predict vibrational and thermal properties of α-sulfur, including the anisotropic lattice thermal expansion. Hereafter, ADPs are derived in the commonly used harmonic approximation (in the computed zero-Kelvin structure) and also in the quasi-harmonic approximation (QHA) which takes the predicted lattice thermal expansion into account. At the PPBE+D3(BJ) level, the QHA leads to excellent agreement with experiments. Finally, more general implications of this study for theory and experiment are discussed.

1.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
, and
K. A.
Persson
,
APL Mater.
1
,
011002
(
2013
).
2.
K.
Lejaeghere
,
G.
Bihlmayer
,
T.
Björkman
,
P.
Blaha
,
S.
Blügel
,
V.
Blum
,
D.
Caliste
,
I. E.
Castelli
,
S. J.
Clark
,
A.
Dal Corso
,
S.
de Gironcoli
,
T.
Deutsch
,
J. K.
Dewhurst
,
I.
Di Marco
,
C.
Draxl
,
M.
Dułak
,
O.
Eriksson
,
J. A.
Flores-Livas
,
K. F.
Garrity
,
L.
Genovese
,
P.
Giannozzi
,
M.
Giantomassi
,
S.
Goedecker
,
X.
Gonze
,
O.
Grånäs
,
E. K. U.
Gross
,
A.
Gulans
,
F.
Gygi
,
D. R.
Hamann
,
P. J.
Hasnip
,
N. A. W.
Holzwarth
,
D.
Iuşan
,
D. B.
Jochym
,
F.
Jollet
,
D.
Jones
,
G.
Kresse
,
K.
Koepernik
,
E.
Küçükbenli
,
Y. O.
Kvashnin
,
I. L. M.
Locht
,
S.
Lubeck
,
M.
Marsman
,
N.
Marzari
,
U.
Nitzsche
,
L.
Nordström
,
T.
Ozaki
,
L.
Paulatto
,
C. J.
Pickard
,
W.
Poelmans
,
M. I. J.
Probert
,
K.
Refson
,
M.
Richter
,
G.-M.
Rignanese
,
S.
Saha
,
M.
Scheffler
,
M.
Schlipf
,
K.
Schwarz
,
S.
Sharma
,
F.
Tavazza
,
P.
Thunström
,
A.
Tkatchenko
,
M.
Torrent
,
D.
Vanderbilt
,
M. J.
van Setten
,
V.
Van Speybroeck
,
J. M.
Wills
,
J. R.
Yates
,
G.-X.
Zhang
, and
S.
Cottenier
,
Science
351
,
aad3000
(
2016
).
3.
R. P.
Stoffel
,
C.
Wessel
,
M.-W.
Lumey
, and
R.
Dronskowski
,
Angew. Chem., Int. Ed.
49
,
5242
(
2010
).
4.
J. M.
Skelton
,
D.
Tiana
,
S. C.
Parker
,
A.
Togo
,
I.
Tanaka
, and
A.
Walsh
,
J. Chem. Phys.
143
,
064710
(
2015
).
5.
A.
Erba
,
J.
Maul
, and
B.
Civalleri
,
Chem. Commun.
52
,
1820
(
2016
).
6.
A.
Erba
,
J. Chem. Phys.
141
,
124115
(
2014
).
7.
A.
Erba
,
J.
Maul
,
M.
Itou
,
R.
Dovesi
, and
Y.
Sakurai
,
Phys. Rev. Lett.
115
,
117402
(
2015
).
8.
O.
Hellman
,
I. A.
Abrikosov
, and
S. I.
Simak
,
Phys. Rev. B
84
,
180301
(
2011
).
9.
I.
Errea
,
M.
Calandra
, and
F.
Mauri
,
Phys. Rev. Lett.
111
,
177002
(
2013
).
10.
J. M.
Skelton
,
S. C.
Parker
,
A.
Togo
,
I.
Tanaka
, and
A.
Walsh
,
Phys. Rev. B
89
,
205203
(
2014
).
11.
A.
Togo
,
L.
Chaput
, and
I.
Tanaka
,
Phys. Rev. B
91
,
094306
(
2015
).
12.
B.
Monserrat
,
N. D.
Drummond
, and
R. J.
Needs
,
Phys. Rev. B
87
,
144302
(
2013
).
13.
J.
Baima
,
A.
Zelferino
,
P.
Olivero
,
A.
Erba
, and
R.
Dovesi
,
Phys. Chem. Chem. Phys.
18
,
1961
(
2016
).
14.
N. J.
Lane
,
S. C.
Vogel
,
G.
Hug
,
A.
Togo
,
L.
Chaput
,
L.
Hultman
, and
M. W.
Barsoum
,
Phys. Rev. B
86
,
214301
(
2012
).
15.
A. F.
Zurhelle
,
V. L.
Deringer
,
R. P.
Stoffel
, and
R.
Dronskowski
,
J. Phys.: Condens. Matter
28
,
115401
(
2016
).
16.
A. Ø.
Madsen
,
B.
Civalleri
,
M.
Ferrabone
,
F.
Pascale
, and
A.
Erba
,
Acta Crystallogr., Sect. A: Found. Crystallogr.
69
,
309
(
2013
).
17.
C. G.
Pozzi
,
A. C.
Fantoni
,
A. E.
Goeta
,
E.
de Matos Gomes
,
G. J.
McIntyre
, and
G.
Punte
,
Chem. Phys.
423
,
85
(
2013
).
18.
V. L.
Deringer
,
R. P.
Stoffel
,
A.
Togo
,
B.
Eck
,
M.
Meven
, and
R.
Dronskowski
,
CrystEngComm
16
,
10907
(
2014
).
19.
J.
George
,
A.
Wang
,
V. L.
Deringer
,
R.
Wang
,
R.
Dronskowski
, and
U.
Englert
,
CrystEngComm
17
,
7414
(
2015
).
20.
V. L.
Deringer
,
A.
Wang
,
J.
George
,
R.
Dronskowski
, and
U.
Englert
,
Dalton Trans.
45
,
13680
(
2016
).
21.
D.
Cruickshank
,
Acta Crystallogr.
9
,
754
(
1956
).
22.
D.
Cruickshank
,
Acta Crystallogr.
9
,
1005
(
1956
).
23.
S. C.
Capelli
,
A.
Albinati
,
S. A.
Mason
, and
B. T. M.
Willis
,
J. Phys. Chem. A
110
,
11695
(
2006
).
24.
D.
Cruickshank
,
Acta Crystallogr.
9
,
1010
(
1956
).
25.
K. N.
Jarzembska
,
A. A.
Hoser
,
R.
Kamiński
,
A. Ø.
Madsen
,
K.
Durka
, and
K.
Woźniak
,
Cryst. Growth Des.
14
,
3453
(
2014
).
26.
S.
Biernacki
and
M.
Scheffler
,
Phys. Rev. Lett.
63
,
290
(
1989
).
27.
P.
Pavone
,
K.
Karch
,
O.
Schütt
,
D.
Strauch
,
W.
Windl
,
P.
Giannozzi
, and
S.
Baroni
,
Phys. Rev. B
48
,
3156
(
1993
).
28.
A. L.
Goodwin
,
M.
Calleja
,
M. J.
Conterio
,
M. T.
Dove
,
J. S. O.
Evans
,
D. A.
Keen
,
L.
Peters
, and
M. G.
Tucker
,
Science
319
,
794
(
2008
).
29.
S.
Schmerler
and
J.
Kortus
,
Phys. Rev. B
89
,
064109
(
2014
).
30.
A. Y.
Likhacheva
,
S. V.
Rashchenko
,
A. D.
Chanyshev
,
T. M.
Inerbaev
,
K. D.
Litasov
, and
D. S.
Kilin
,
J. Chem. Phys.
140
,
164508
(
2014
).
31.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
,
Chem. Rev.
116
,
5105
(
2016
).
32.
J. G.
Brandenburg
and
S.
Grimme
,
Top. Curr. Chem.
345
,
1
(
2014
).
33.
C. F.
Macrae
,
P. R.
Edgington
,
P.
McCabe
,
E.
Pidcock
,
G. P.
Shields
,
R.
Taylor
,
M.
Towler
, and
J.
van de Streek
,
J. Appl. Crystallogr.
39
,
453
(
2006
).
34.
O.
Diéguez
and
N.
Marzari
,
Phys. Rev. B
80
,
214115
(
2009
).
35.
H.
Momida
,
T.
Yamashita
, and
T.
Oguchi
,
J. Phys. Soc. Jpn.
83
,
124713
(
2014
).
36.
S.
Shang
,
Y.
Wang
,
P.
Guan
,
W. Y.
Wang
,
H.
Fang
,
T.
Anderson
, and
Z.-K.
Liu
,
J. Mater. Chem. A
3
,
8002
(
2015
).
37.
A.
Togo
,
F.
Oba
, and
I.
Tanaka
,
Phys. Rev. B
78
,
134106
(
2008
).
38.
A.
Togo
and
I.
Tanaka
,
Scr. Mater.
108
,
1
5
(
2015
).
39.
R. W.
Grosse-Kunstleve
and
P. D.
Adams
,
J. Appl. Crystallogr.
35
,
477
(
2002
).
40.
K.
Trueblood
,
H.-B.
Bürgi
,
H.
Burzlaff
,
J.
Dunitz
,
C.
Gramaccioli
,
H.
Schulz
,
U.
Shmueli
, and
S.
Abrahams
,
Acta Crystallogr., Sect. A: Found. Crystallogr.
52
,
770
(
1996
).
41.
J.
George
, Molecular Toolbox. This code is freely available via the internet at http://www.ellipsoids.de, together with additional information regarding ADP computation.
42.
V. L.
Deringer
,
R. P.
Stoffel
, and
R.
Dronskowski
,
Phys. Rev. B
89
,
094303
(
2014
).
43.
R. P.
Stoffel
and
R.
Dronskowski
,
Z. Anorg. Allg. Chem.
639
,
1227
(
2013
).
44.
V. L.
Deringer
,
M.
Lumeij
,
R. P.
Stoffel
, and
R.
Dronskowski
,
J. Comput. Chem.
34
,
2320
(
2013
).
45.
V. L.
Deringer
,
R. P.
Stoffel
, and
R.
Dronskowski
,
Cryst. Growth Des.
14
,
871
(
2014
).
46.
C.
Červinka
,
M.
Fulem
,
R. P.
Stoffel
, and
R.
Dronskowski
,
J. Phys. Chem. A
120
,
2022
(
2016
).
47.
A.
Erba
,
M.
Shahrokhi
,
R.
Moradian
, and
R.
Dovesi
,
J. Chem. Phys.
142
,
044114
(
2015
).
48.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
49.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
50.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
51.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
52.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
53.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
54.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
55.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
56.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
(
2011
).
57.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
58.
T.
Bučko
,
S.
Lebègue
,
J.
Hafner
, and
J. G.
Ángyán
,
Phys. Rev. B
87
,
064110
(
2013
).
59.
M.
Dion
,
H.
Rydberg
,
E.
Schröder
,
D. C.
Langreth
, and
B. I.
Lundqvist
,
Phys. Rev. Lett.
92
,
246401
(
2004
).
60.
G.
Román-Pérez
and
J. M.
Soler
,
Phys. Rev. Lett.
103
,
096102
(
2009
).
61.
K.
Lee
,
É. D.
Murray
,
L.
Kong
,
B. I.
Lundqvist
, and
D. C.
Langreth
,
Phys. Rev. B
82
,
081101
(
2010
).
62.
J.
Klimeš
,
D. R.
Bowler
, and
A.
Michaelides
,
Phys. Rev. B
83
,
195131
(
2011
).
63.
E. D.
West
,
J. Am. Chem. Soc.
81
,
29
(
1959
).
64.
SAINT+ (Version 7.68),
Bruker AXS, Inc.
,
Madison, Wisconsin, USA
,
2009
.
65.
SADABS,
Bruker AXS, Inc.
,
Madison, Wisconsin, USA
,
2008
.
66.
G.
Sheldrick
,
Acta Crystallogr., Sect. C: Struct. Chem.
71
,
3
(
2015
).
67.
PROGRAM FullProf.2k (Version 5.80–May 2016-ILL, Grenoble).
68.
J.
George
,
V. L.
Deringer
, and
R.
Dronskowski
,
Inorg. Chem.
54
,
956
(
2015
).
69.
J.
van de Streek
and
M. A.
Neumann
,
Acta Crystallogr., Sect. B: Struct. Sci.
66
,
544
(
2010
).
70.
M.
Becucci
,
R.
Bini
,
E.
Castellucci
,
B.
Eckert
, and
H. J.
Jodl
,
J. Phys. Chem. B
101
,
2132
(
1997
).
71.
B.
Van Troeye
,
M.
Torrent
, and
X.
Gonze
,
Phys. Rev. B
93
,
144304
(
2016
).
72.
D. G. A.
Smith
,
L. A.
Burns
,
K.
Patkowski
, and
C. D.
Sherrill
,
J. Phys. Chem. Lett.
7
,
2197
(
2016
).
73.
A. R.
Oganov
and
P. I.
Dorogokupets
,
Phys. Rev. B
67
,
224110
(
2003
).
74.
A. R.
Oganov
and
P. I.
Dorogokupets
,
J. Phys.: Condens. Matter
16
,
1351
(
2004
).
75.
A.
Erba
,
J.
Maul
,
R.
Demichelis
, and
R.
Dovesi
,
Phys. Chem. Chem. Phys.
17
,
11670
(
2015
).
76.
C.K.
Johnson
, ORTEP: A FORTRAN Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations, ORNL-3794 (Rev.), Union Carbide Corp., Oak Ridge Natl. Lab, June
1965
.

Supplementary Material

You do not currently have access to this content.