We investigate the glassy dynamics of glycerol in the confinement of a microemulsion system, which is stable on cooling down to the glass transition of its components. By changing the composition, we vary the viscosity of the matrix, while keeping the confining geometry intact, as is demonstrated by small angle X-ray scattering. By means of 2H NMR, differential scanning calorimetry, and triplet solvation dynamics we, thus, probe the dynamics of glycerol in confinements of varying rigidity. 2H NMR results show that, at higher temperatures, the dynamics of confined glycerol is unchanged compared to bulk behavior, while the reorientation of glycerol molecules becomes significantly faster than in the bulk in the deeply supercooled regime. However, comparison of different 2H NMR findings with data from calorimetry and solvation dynamics reveals that this acceleration is not due to the changed structural relaxation of glycerol, but rather due to the rotational motion of essentially rigid glycerol droplets or of aggregates of such droplets in a more fluid matrix. Thus, independent of the matrix mobility, the glycerol dynamics remains unchanged except for the smallest droplets, where an increase of Tg and, thus, a slowdown of the structural relaxation is observed even in a fluid matrix.

1.
M.
Alcoutlabi
and
G. B.
McKenna
,
J. Phys.: Condens. Matter
17
,
R461
(
2005
).
2.
M.
Vogel
,
Eur. Phys. J.: Spec. Top.
189
,
47
(
2010
).
3.
R.
Richert
,
Annu. Rev. Phys. Chem.
62
,
65
(
2011
).
4.
S.
Cerveny
,
F.
Mallamace
,
J.
Swenson
,
M.
Vogel
, and
L.
Xu
,
Chem. Rev.
116
,
7608
(
2016
).
5.
C.
Jackson
and
G.
McKenna
,
J. Non-Cryst. Solids
131-133
,
9002
(
1991
).
6.
G. B.
McKenna
,
Eur. Phys. J.: Spec. Top.
141
,
291
(
2007
).
7.
G. B.
McKenna
,
J. Phys. IV
10
,
53
57
, (
2000
).
8.
G.
Barut
,
P.
Pissis
,
R.
Pelster
, and
G.
Nimtz
,
Phys. Rev. Lett.
80
,
3543
(
1998
).
9.
F.
Kremer
,
A.
Huwe
,
M.
Arndt
,
P.
Behrens
, and
W.
Schwieger
,
J. Phys.: Condens. Matter
11
,
A175
(
1999
).
10.
W.
Gorbatschow
,
M.
Arndt
,
R.
Stannarius
, and
F.
Kremer
,
Europhys. Lett.
35
,
719
(
1996
).
11.
V.
Teboul
and
C. A.
Simionesco
,
J. Phys.: Condens. Matter
14
,
5699
(
2002
).
12.
S.
Khodadadi
,
S.
Pawlus
, and
A. P.
Sokolov
,
J. Phys. Chem. B
112
,
14273
(
2008
).
13.
S.
Gradmann
,
P.
Medick
, and
E. A.
Rössler
,
J. Phys. Chem. B
113
,
8443
(
2009
).
14.
S. A.
Lusceac
,
M.
Rosenstihl
,
M.
Vogel
,
C.
Gainaru
,
A.
Fillmer
, and
R.
Böhmer
,
J. Non-Cryst. Solids
357
,
655
(
2011
).
15.
C. J.
Ellison
and
J. M.
Torkelson
,
Nat. Mater.
2
,
695
(
2003
).
16.
P.
Scheidler
,
W.
Kob
, and
K.
Binder
,
J. Phys. Chem. B
108
,
6673
(
2004
).
17.
K.
Watanabe
,
T.
Kawasaki
, and
H.
Tanaka
,
Nat. Mater.
10
,
512
(
2011
).
18.
M. F.
Harrach
,
F.
Klameth
,
B.
Drossel
, and
M.
Vogel
,
J. Chem. Phys.
142
,
034703
(
2015
).
19.
F.
Klameth
and
M.
Vogel
,
J. Phys. Chem. Lett.
6
,
4385
(
2015
).
20.
T.
Blochowicz
,
C.
Karle
,
A.
Kudlik
,
P.
Medick
,
I.
Roggatz
,
M.
Vogel
,
C.
Tschirwitz
,
J.
Wolber
,
J.
Senker
, and
E.
Rössler
,
J. Phys. Chem. B
103
,
4032
(
1999
).
21.
S.
Cerveny
,
G. A.
Schwartz
,
R.
Bergman
, and
J.
Swenson
,
Phys. Rev. Lett.
93
,
245702
(
2004
).
22.
A.
Schönhals
,
H.
Goering
,
C.
Schick
,
B.
Frick
,
M.
Mayorova
, and
R.
Zorn
,
Eur. Phys. J.: Spec. Top.
141
,
255
(
2007
).
23.
A.
Schönhals
,
H.
Goering
,
C.
Schick
,
B.
Frick
, and
R.
Zorn
,
Eur. Phys. J. E
12
,
173
(
2003
).
24.
S.-H.
Chen
,
L.
Liu
,
E.
Fratini
,
P.
Baglioni
,
A.
Faraone
, and
E.
Mamontov
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
9012
(
2006
).
25.
T.
Blochowicz
,
S.
Schramm
,
S.
Lusceac
,
M.
Vogel
,
B.
Stühn
,
P.
Gutfreund
, and
B.
Frick
,
Phys. Rev. Lett.
109
,
035702
(
2012
).
26.
J.
Swenson
and
S.
Cerveny
,
J. Phys.: Condens. Matter
27
,
033102
(
2015
).
27.
M.
Arndt
,
R.
Stannarius
,
H.
Groothues
,
E.
Hempel
, and
F.
Kremer
,
Phys. Rev. Lett.
79
,
2077
(
1997
).
28.
F.
He
,
L.-M.
Wang
, and
R.
Richert
,
Phys. Rev. B
71
,
144205
(
2005
).
29.
A.
Sanz
,
A.
Nogales
, and
T. A.
Ezquerra
,
Soft Matter
7
,
6477
(
2011
).
30.
T.
Blochowicz
,
E.
Gouirand
,
A.
Fricke
,
B.
Stühn
, and
B.
Frick
,
Chem. Phys. Lett.
475
,
171
(
2009
).
31.
T.
Spehr
,
B.
Frick
,
I.
Grillo
,
P.
Falus
,
M.
Müller
, and
B.
Stühn
,
Phys. Rev. E
79
,
031404
(
2009
).
32.
T.
Spehr
,
B.
Frick
,
M.
Zamponi
, and
B.
Stühn
,
Soft Matter
7
,
5745
(
2011
).
33.
L.-M.
Wang
,
F.
He
, and
R.
Richert
,
Phys. Rev. Lett.
92
,
095701
(
2004
).
34.
R.
Zorn
,
M.
Mayorova
,
D.
Richter
, and
B.
Frick
,
Soft Matter
4
,
522
(
2008
).
35.
A.
Chakraborty
,
D.
Seth
,
P.
Setua
, and
N.
Sarkar
,
J. Phys. Chem. B
110
,
5359
(
2006
).
36.
M.
Vogel
,
Phys. Rev. Lett.
101
,
225701
(
2008
).
37.
M.
Sattig
and
M.
Vogel
,
J. Phys. Chem. Lett.
5
,
174
(
2014
).
38.
M.
Sattig
,
S.
Reutter
,
F.
Fujara
,
M.
Werner
,
G.
Buntkowsky
, and
M.
Vogel
,
Phys. Chem. Chem. Phys.
16
,
19229
(
2014
).
39.
C. R.
Herbers
,
D.
Sauer
, and
M.
Vogel
,
J. Chem. Phys.
136
,
124511
(
2012
).
40.
S. A.
Lusceac
,
M. R.
Vogel
, and
C. R.
Herbers
,
Biochim. Biophys. Acta, Proteins Proteomics
1804
,
41
(
2010
).
41.
S. A.
Lusceac
and
M.
Vogel
,
J. Phys. Chem. B
114
,
10209
(
2010
).
42.
D.
Schaefer
,
J.
Leisen
, and
H. W.
Spiess
,
J. Magn. Reson., Ser. A
115
,
60
(
1995
).
43.
R.
Richert
,
J. Chem. Phys.
113
,
8404
(
2000
).
44.
D.
Sauer
,
B.
Schuster
,
M.
Rosenstihl
,
S.
Schneider
,
V.
Talluto
,
T.
Walther
,
T.
Blochowicz
,
B.
Stühn
, and
M.
Vogel
,
J. Chem. Phys.
140
,
114503
(
2014
).
45.
V.
Talluto
,
T.
Blochowicz
, and
T.
Walther
,
Appl. Phys. B
122
,
1
(
2016
).
46.
R. M.
Diehl
,
F.
Fujara
, and
H.
Sillescu
,
Europhys. Lett.
13
,
257
(
1990
).
47.
P. M.
Mehl
,
Thermochim. Acta
272
,
201
(
1996
).
48.
K.
Schmidt-Rohr
and
H.
Spiess
,
Multidimensional Solid-State NMR and Polymers
(
Academic Press
,
1994
).
49.
R.
Böhmer
and
G.
Hinze
,
J. Chem. Phys.
109
,
241
(
1998
).
50.
N.
Bloembergen
,
E. M.
Purcell
, and
R. V.
Pound
,
Phys. Rev.
73
,
679
(
1948
).
51.
R.
Böhmer
,
G.
Diezemann
,
G.
Hinze
, and
E.
Rössler
,
Prog. Nucl. Magn. Reson. Spectrosc.
39
,
191
(
2001
).
52.
T.
Blochowicz
,
A.
Kudlik
,
S.
Benkhof
,
J.
Senker
,
E.
Rössler
, and
G.
Hinze
,
J. Chem. Phys.
110
,
12011
(
1999
).
53.
R.
Zorn
,
J. Chem. Phys.
116
,
3204
(
2002
).
54.
W.
Schnauss
,
F.
Fujara
, and
H.
Sillescu
,
J. Chem. Phys.
97
,
1378
(
1992
).
55.
M.
Appel
,
T. L.
Spehr
,
R.
Wipf
,
C.
Moers
,
H.
Frey
, and
B.
Stühn
,
J. Chem. Phys.
139
,
184903
(
2013
).
56.
A.
Fillmer
,
C.
Gainaru
, and
R.
Böhmer
,
J. Non-Cryst. Solids
356
,
743
(
2010
).
57.
M.
Arndt
,
R.
Stannarius
,
W.
Gorbatschow
, and
F.
Kremer
,
Phys. Rev. E
54
,
5377
(
1996
).
58.
J.
Zhang
and
J.
Jonas
,
J. Phys. Chem.
96
,
3478
(
1992
).
59.
F.
He
,
L.-M.
Wang
, and
R.
Richert
,
Phys. Rev. B
71
,
144205
(
2005
).
60.
W.
Zheng
and
S. L.
Simon
,
J. Chem. Phys.
127
,
194501
(
2007
).
61.
R.
Busselez
,
R.
Lefort
,
M.
Guendouz
,
B.
Frick
,
O.
Merdrignac-Conanec
, and
D.
Morineau
,
J. Chem. Phys.
130
,
214502
(
2009
).

Supplementary Material

You do not currently have access to this content.