The precise description of quantum nuclear fluctuations in atomistic modelling is possible by employing path integral techniques, which involve a considerable computational overhead due to the need of simulating multiple replicas of the system. Many approaches have been suggested to reduce the required number of replicas. Among these, high-order factorizations of the Boltzmann operator are particularly attractive for high-precision and low-temperature scenarios. Unfortunately, to date, several technical challenges have prevented a widespread use of these approaches to study the nuclear quantum effects in condensed-phase systems. Here we introduce an inexpensive molecular dynamics scheme that overcomes these limitations, thus making it possible to exploit the improved convergence of high-order path integrals without having to sacrifice the stability, convenience, and flexibility of conventional second-order techniques. The capabilities of the method are demonstrated by simulations of liquid water and ice, as described by a neural-network potential fitted to the dispersion-corrected hybrid density functional theory calculations.

1.
S.
Raugei
and
M. L.
Klein
,
J. Chem. Am. Soc.
125
,
8992
(
2003
).
2.
M. A.
Morales
,
J. M.
McMahon
,
C.
Pierleoni
, and
D. M.
Ceperley
,
Phys. Rev. Lett.
110
,
065702
(
2013
).
3.
M.
Ceriotti
,
W.
Fang
,
P. G.
Kusalik
,
R. H.
McKenzie
,
A.
Michaelides
,
M. A.
Morales
, and
T. E.
Markland
,
Chem. Rev.
116
,
7529
(
2016
).
5.
R. A.
Berner
,
S. T.
Petsch
,
J. A.
Lake
,
D. J.
Beerling
,
B. N.
Popp
,
R. S.
Lane
,
E. A.
Laws
,
M. B.
Westley
,
N.
Cassar
,
F. I.
Woodward
, and
W. P.
Quick
,
Science
287
,
1630
(
2000
).
6.
M. A.
Webb
,
Y.
Wang
,
B. J.
Braams
,
J. M.
Bowman
, and
T. F.
Miller
 III
,
Geochim. Cosmochim. Acta
197
,
14
(
2017
).
7.
C.
Andreani
,
D.
Colognesi
,
J.
Mayers
,
G. F.
Reiter
, and
R.
Senesi
,
Adv. Phys.
54
,
377
(
2005
).
8.
S.
Habershon
,
D. E.
Manolopoulos
,
T. E.
Markland
, and
T. F.
Miller
,
Annu. Rev. Phys. Chem.
64
,
387
(
2013
).
9.
M.
Del Ben
,
J.
Hutter
, and
J.
Vandevondele
,
J. Chem. Theory Comput.
8
,
4177
(
2012
).
10.
J.
Behler
and
M.
Parrinello
,
Phys. Rev. Lett.
98
,
146401
(
2007
).
11.
A. P.
Bartók
,
M. C.
Payne
,
R.
Kondor
, and
G.
Csányi
,
Phys. Rev. Lett.
104
,
136403
(
2010
).
12.
G. R.
Medders
,
V.
Babin
, and
F.
Paesani
,
J. Chem. Theory Comput.
10
,
2906
(
2014
).
13.
D. M.
Ceperley
,
Rev. Mod. Phys.
67
,
279
(
1995
).
14.
M.
Parrinello
and
A.
Rahman
,
J. Chem. Phys.
80
,
860
(
1984
).
15.
D.
Chandler
and
P. G.
Wolynes
,
J. Chem. Phys.
74
,
4078
(
1981
).
16.
T. E.
Markland
and
D. E.
Manolopoulos
,
J. Chem. Phys.
129
,
024105
(
2008
).
17.
T. E.
Markland
and
D. E.
Manolopoulos
,
Chem. Phys. Lett.
464
,
256
(
2008
).
18.
M.
Ceriotti
,
G.
Bussi
, and
M.
Parrinello
,
Phys. Rev. Lett.
103
,
30603
(
2009
).
19.
M.
Ceriotti
,
D. E.
Manolopoulos
, and
M.
Parrinello
,
J. Chem. Phys.
134
,
84104
(
2011
).
20.
M.
Ceriotti
and
D. E.
Manolopoulos
,
Phys. Rev. Lett.
109
,
100604
(
2012
).
21.
M.
Takahashi
and
M.
Imada
,
J. Phys. Soc. Jpn.
53
,
3765
(
1984
).
23.
24.
Y.
Kamibayashi
and
S.
Miura
,
J. Chem. Phys.
145
,
074114
(
2016
).
25.
S. S.
Jang
and
G. A.
Voth
,
J. Chem. Phys.
115
,
7832
(
2001
).
26.
T. M.
Yamamoto
,
J. Chem. Phys.
123
,
104101
(
2005
).
27.
O.
Marsalek
,
P.-Y.
Chen
,
R.
Dupuis
,
M.
Benoit
,
M.
Méheut
,
Z.
Bačić
, and
M. E.
Tuckerman
,
J. Chem. Theory Comput.
10
,
1440
(
2014
).
28.
M.
Ceriotti
,
G. A. R.
Brain
,
O.
Riordan
, and
D. E.
Manolopoulos
,
Proc. R. Soc. A
468
,
2
(
2011
).
29.
I.
Poltavsky
and
A.
Tkatchenko
,
Chem. Sci.
7
,
1368
(
2016
).
30.
T.
Morawietz
,
A.
Singraber
,
C.
Dellago
, and
J.
Behler
,
Proc. Natl. Acad. Sci. U. S. A.
113
,
8368
(
2016
).
31.
A.
Pérez
and
M. E.
Tuckerman
,
J. Chem. Phys.
135
,
064104
(
2011
).
32.
C.
Predescu
,
Phys. Rev. E
70
,
066705
(
2004
).
33.
M.
Buchowiecki
,
J.
Vanícek
, and
J.
Vaníček
,
Chem. Phys. Lett.
588
,
11
(
2013
).
34.
A.
Putrino
,
D.
Sebastiani
, and
M.
Parrinello
,
J. Chem. Phys.
113
,
7102
(
2000
).
35.

In this work, we could afford parallelizing calculations over all of the beads. As a consequence, there would be no advantage in leaving half of the processors idle during the evaluation of 𝐟(j). Therefore, we used throughout the symmetric FD expression.

36.
B.
Cheng
and
M.
Ceriotti
,
J. Chem. Phys.
141
,
244112
(
2014
).
37.
M.
Ceriotti
,
J.
More
, and
D. E.
Manolopoulos
,
Comput. Phys. Commun.
185
,
1019
(
2014
).
38.
V.
Kapil
,
J.
VandeVondele
, and
M.
Ceriotti
,
J. Chem. Phys.
144
,
054111
(
2016
).
39.
M.
Ceriotti
,
G.
Bussi
, and
M.
Parrinello
,
J. Chem. Theory Comput.
6
,
1170
(
2010
).
40.
M.
Ceriotti
, GLE4MD,
2010
, http://epfl-cosmo.github.io/gle4md.
41.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
42.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
43.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
44.
B.
Cheng
,
J.
Behler
, and
M.
Ceriotti
,
J. Phys. Chem. Lett.
7
,
2210
(
2016
).
45.
A.
Singraber
,
T.
Morawietz
,
J.
Behler
, and
C.
Dellago
(private communication,
2016
).
46.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
47.
M.
Ceriotti
,
M.
Parrinello
,
T. E.
Markland
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
133
,
124104
(
2010
).
48.
M.
Rossi
,
M.
Ceriotti
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
140
,
234116
(
2014
).
49.
M.
Ceriotti
,
J.
Cuny
,
M.
Parrinello
, and
D. E.
Manolopoulos
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
15591
(
2013
).
50.
F.
Uhl
,
D.
Marx
, and
M.
Ceriotti
,
J. Chem. Phys.
145
,
054101
(
2016
).
51.
S.
Ganeshan
,
R.
Ramírez
, and
M. V.
Fernández-Serra
,
Phys. Rev. B
87
,
134207
(
2013
).
52.
L.
Wang
,
M.
Ceriotti
, and
T. E.
Markland
,
J. Chem. Phys.
141
,
104502
(
2014
).
53.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
99
,
10070
(
1993
).
54.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6168
(
1994
).
55.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
121
,
3368
(
2004
).
56.
A.
Witt
,
S. D.
Ivanov
,
M.
Shiga
,
H.
Forbert
, and
D.
Marx
,
J. Chem. Phys.
130
,
194510
(
2009
).
57.
M.
Rossi
,
H.
Liu
,
F.
Paesani
,
J.
Bowman
, and
M.
Ceriotti
,
J. Chem. Phys.
141
,
181101
(
2014
).
58.
G.
Brain
, “
Higher order propagators in path integral molecular dynamics
,” in Part II Chemistry, Ph.D. thesis,
Oxford University
,
2011
.
59.
J.
Behler
,
J. Chem. Phys.
134
,
074106
(
2011
).
60.
J.
Behler
,
J. Phys.: Condens. Matter
26
,
183001
(
2014
).
61.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
You do not currently have access to this content.