Peroxidase-oxidase is an enzymatic reaction that can exhibit dynamical scenarios such as bistability, sustained oscillations, and Shilnikov chaos. In this work, we apply the chemical reaction network theory approach to find kinetic constants such that the associated mass action kinetics ordinary differential equations induced by three four dimensional structurally different enzymatic reaction systems can support the same steady states for several chemical species despite differences in their chemical nature.

1.
M.
Zámocký
and
C.
Obinger
,
Molecular Phylogeny of Heme Peroxidases
(
Springer-Verlag
,
2010
), Chap. 2.
2.
D. L.
Nelson
and
M. M.
Cox
,
Lehninger Principles of Biochemistry
, 5th ed. (
W. H. Freeman
,
2008
).
3.
H. R.
Petty
,
R. G.
Worth
, and
A. L.
Kindzelskii
,
Phys. Rev. Lett.
84
,
2754
(
2000
).
4.
L. F.
Olsen
,
U.
Kummer
,
A. L.
Kindzelskii
, and
H. R.
Petty
,
Biophys. J.
84
,
69
(
2004
).
5.
H.
Atamna
and
K.
Boyle
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
3381
(
2006
).
6.
B. D.
Aguda
and
B. L.
Clarke
,
J. Chem. Phys.
87
,
3461
(
1987
).
7.
R.
Larter
,
C. L.
Bush
,
T. R.
Lonis
, and
B. D.
Aguda
,
J. Chem. Phys.
87
,
5765
(
1987
).
8.
R.
Larter
,
C. G.
Steinmetz
, and
B. D.
Aguda
,
J. Chem. Phys.
89
,
6506
(
1988
).
9.
B. D.
Aguda
,
R.
Larter
, and
B. L.
Clarke
,
J. Chem. Phys.
90
,
4168
(
1989
).
10.
C. G.
Steinmetz
and
R.
Larter
,
J. Chem. Phys.
94
,
1388
(
1991
).
11.
T. V.
Bronnikova
,
W. M.
Schaffer
, and
L. F.
Olsen
,
J. Chem. Phys.
105
,
10849
(
1996
).
12.
A.
Sensse
,
M. J. B.
Hauser
, and
M.
Eiswirth
,
J. Chem. Phys.
125
,
014901
(
2006
).
13.
14.
T. V.
Bronnikova
,
V. R.
Fed’kina
,
W. M.
Schaffer
, and
L. F.
Olsen
,
J. Phys. Chem.
99
,
9309
(
1995
).
15.
A.
Sensse
and
M.
Eiswirth
,
J. Chem. Phys.
122
,
44516
(
2005
).
16.
A.
Sensse
, “
Convex and toric geometry to analyze complex dynamics in chemical reaction systems
,” Ph.D. thesis,
Otto-von-Guericke-Universitat
,
Magdeburg
,
2005
.
17.
B. L.
Clarke
,
Adv. Chem. Phys.
43
,
1
(
1980
).
18.
M.
Feinberg
,
Chem. Eng. Sci.
42
,
2229
(
1987
).
19.
20.
V.
Hárs
and
J.
Tóth
, “
On the inverse problem of reaction kinetics
,” in
Colloquia Mathematica Societatis János Bolyai
, edited by
M.
Farkas
(
Szeged, Hungary
,
1979
), pp.
363
379
.
21.
I. M.
Forero
, “
Reaction network analysis in biochemical signaling pathways
,” Ph.D. thesis,
Universidad de Navarra
,
2009
.
22.
P. R.
Ellison
and
M.
Feinberg
,
J. Mol. Catal. A: Chem.
154
,
155
(
2000
).
23.
P. R.
Ellison
, “
The advance deficiency algorithm and its applications to mechanism discrimination
,” Ph.D. thesis,
University of Rochester
,
New York
,
1998
.
24.
I. R.
Epstein
and
J. A.
Pojman
,
An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos
(
Oxford University Press
,
1998
).
25.
G.
Shinar
and
M.
Feinberg
,
Science
327
,
1389
(
2010
).
26.
M.
Feinberg
and
P. R.
Ellison
, The chemical reaction network toolbox. Version 1.1a,
1995
, available at https://crnt.osu.edu/chemical-reaction-network-toolbox-version-1.1-downloads-and-instructions.
27.
H.
Ji
,
P. R.
Ellison
,
D.
Knight
, and
M.
Feinberg
, The chemical reaction network toolbox. Version 2.3,
2014
, available at https://crnt.osu.edu/chemical-reaction-network-toolbox.
28.

Linear combinations where concentrations of chemical species are conserved constrain the solutions of MAK ODEs. Within the CRNT vocabulary, these restrictions are called stoichiometric compatibility classes.

29.

Only available in the MS-DOS version of CRNT Toolbox.

30.
P. R.
Ellison
and
M.
Feinberg
,
J. Mol. Catal. A: Chem.
154
,
169
(
2000
).
31.
V. I.
Arnold
,
Ordinary Differential Equations
, 3rd ed. (
Springer-Verlag
,
1992
).
32.
J. M.
Méndez
and
R.
Femat
,
Chem. Eng. Sci.
83
,
50
(
2012
).

Supplementary Material

You do not currently have access to this content.