The complexes of XH3FN3/OCN/SCN (X = C, Si, Ge, and Sn) have been investigated at the MP2/aug-cc-pVTZ(PP) level. The σ-hole of X atom in XH3F acts as a Lewis acid forming a tetrel bond with pseudohalide anions. Interaction energies of these complexes vary from −8 to −50 kcal/mol, mainly depending on the nature of X and pseudohalide anions. Charge transfer from N/O/S lone pair to X–F and X–H σ* orbitals results in the stabilization of these complexes, and the former orbital interaction is responsible for the large elongation of X–F bond length and the remarkable red shift of its stretch vibration. The tetrel bond in the complexes of XH3F (X = Si, Ge, and Sn) exhibits a significant degree of covalency with XH3F distorted significantly in these complexes. A breakdown of the individual forces involved attributes the stability of the interaction to mainly electrostatic energy, with a relatively large contribution from polarization. The transition state structures that connect the two minima for CH3BrN3 complex have been localized and characterized. The energetic, geometrical, and topological parameters of the complexes were analyzed in the different stages of the SN2 reaction N3 + CH3Br → Br + CH3N3.

1.
K. B.
Borisenko
,
R. O.
Gould
,
C. A.
Morrison
,
S.
Parsons
, and
D. W. H. A.
Rankin
,
J. Mol. Struct.
554
,
163
172
(
2000
).
2.
R. S.
Ruoff
,
T.
Emilsson
,
A. I.
Jaman
,
T. C.
Germann
, and
H. S.
Gutowsky
,
J. Chem. Phys.
96
,
3441
3446
(
1992
).
3.
R. D.
Urban
,
G.
Rouille
, and
M.
Takami
,
J. Mol. Struct.
413-414
,
511
(
1997
).
4.
A. R.
Bassindale
,
M.
Borbaruah
,
S. J.
Glynn
,
D. J.
Parker
, and
P. G.
Taylor
,
J. Chem. Soc., Perkin Trans. 2
1999
,
2099
2109
.
5.
A. R.
Bassindale
,
D. J.
Parker
, and
P. G.
Taylor
,
J. Chem. Soc., Perkin Trans. 2
2000
,
1059
1066
.
6.
I.
Alkorta
,
I.
Rozas
, and
J.
Elguero
,
J. Phys. Chem. A
105
,
743
749
(
2001
).
7.
C. J.
Levy
and
J.
Puddephatt
,
J. Am. Chem. Soc.
119
,
10127
10136
(
1997
).
8.
A.
Bauzá
,
T. J.
Mooibroek
, and
A.
Frontera
,
Angew. Chem., Int. Ed.
52
,
12317
12321
(
2013
).
9.
T.
Clark
,
M.
Hennemann
,
J. S.
Murray
, and
P.
Politzer
,
J. Mol. Model.
13
,
291
296
(
2007
).
10.
J. S.
Murray
,
P.
Lane
, and
P.
Politzer
,
J. Mol. Model.
15
,
723
729
(
2009
).
11.
A.
Bauzá
,
R.
Ramis
, and
A.
Frontera
,
Comput. Theor. Chem.
1038
,
67
70
(
2014
).
12.
P.
Politzer
,
J. S.
Murray
,
P.
Lane
, and
M. C.
Concha
,
Int. J. Quantum Chem.
109
,
3773
3780
(
2009
).
13.
J. S.
Murray
,
M. C.
Concha
, and
P.
Politzer
,
J. Mol. Model.
17
,
2151
2157
(
2011
).
14.
S. A.
Southern
and
D. L.
Bryce
,
J. Phys. Chem. A
119
,
11891
11899
(
2015
).
15.
K. J.
Donald
and
M.
Tawfik
,
J. Phys. Chem. A
117
,
14176
14183
(
2013
).
16.
D.
Mani
and
E.
Arunan
,
Phys. Chem. Chem. Phys.
15
,
14377
14383
(
2013
).
17.
S. J.
Grabowski
,
Phys. Chem. Chem. Phys.
16
,
1824
1834
(
2014
).
18.
D.
Mani
and
E.
T. Arunan
,
J. Phys. Chem. A
118
,
10081
10089
(
2014
).
19.
Q. Z.
Li
,
X.
Guo
,
X.
Yang
,
W. Z.
Li
,
J. B.
Cheng
, and
H. B.
Li
,
Phys. Chem. Chem. Phys.
16
,
11617
11625
(
2014
).
20.
Q. Z.
Li
,
H. Y.
Zhuo
,
H. B.
Li
,
Z. B.
Liu
,
W. Z.
Li
, and
J. B.
Cheng
,
J. Phys. Chem. A
119
,
2217
2224
(
2015
).
21.
A.
Bundhun
,
P.
Ramasami
,
J. S.
Murray
, and
P.
Politzer
,
J. Mol. Model.
19
,
2739
2746
(
2013
).
22.
L. M.
Azofra
and
S.
Scheiner
,
J. Chem. Phys.
142
,
034307
(
2015
).
23.
S. P.
Thomas
,
M. S.
Pavan
, and
T. N.
Guru Row
,
Chem. Commun.
50
,
49
51
(
2014
).
24.
V.
de P. N. Nziko
and
S.
Scheiner
,
Phys. Chem. Chem. Phys.
18
,
3581
3590
(
2016
).
25.
A.
Bauzá
,
T. J.
Mooibroek
, and
A.
Frontera
,
Chem. - Eur. J.
20
,
10245
10248
(
2014
).
26.
A.
Bauzá
and
A.
Frontera
,
Chem. Phys. Chem.
16
,
3108
3113
(
2015
).
27.
S. A. C.
McDowell
and
J. A.
Joseph
,
Phys. Chem. Chem. Phys.
16
,
10854
10860
(
2014
).
28.
A.
Bauzá
,
A.
Frontera
, and
T. J.
Mooibroek
,
Phys. Chem. Chem. Phys.
18
,
1693
1698
(
2016
).
29.
M. X.
Liu
,
Q.
Z. Li
,
W. Z.
Li
, and
J. B.
Cheng
,
J. Mol. Graphics Modell.
65
,
35
42
(
2016
).
30.
M. X.
Liu
,
Q.
Z. Li
,
W. Z.
Li
,
J. B.
Cheng
, and
S. A. C.
McDowell
,
RSC Adv.
6
,
19136
19143
(
2016
).
31.
X.
Guo
,
Y. W.
Liu
,
Q. Z.
Li
,
W. Z.
Li
, and
J. B.
Cheng
,
Chem. Phys. Lett.
620
,
7
12
(
2015
).
32.
N. W.
Mitzel
,
A. J.
Blake
, and
D. W. H.
Rankin
,
J. Am. Chem. Soc.
119
,
4143
4148
(
1997
).
33.
M. S.
Gargari
,
V.
Stilinović
,
A.
Bauzá
,
A.
Frontera
,
P.
McArdle
,
D. V.
Derveer
,
S. W.
Ng
, and
G.
Mahmoudi
,
Chem. - Eur. J.
21
,
17951
17958
(
2015
).
34.
S. V.
Rosokha
,
C. L.
Stern
,
A.
Swartz
, and
R.
Stewart
,
Phys. Chem. Chem. Phys.
16
,
12968
12979
(
2014
).
35.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
556
(
1970
).
36.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
, et al., gaussian 09, Revision A.02,
Gaussian, Inc.
,
Wallingford
,
2009
.
37.
F. A.
Bulat
,
A.
Toro-Labbe
,
T.
Brinck
,
J. S.
Murray
, and
P.
Politzer
,
J. Mol. Model.
16
,
1679
1691
(
2010
).
38.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev.
88
,
899
926
(
1988
).
39.
R. F. W.
Bader
, AIM2000 Program, v.2.0,
McMaster University
,
Hamilton, Canada
,
2000
.
40.
P. F.
Su
and
H.
Li
,
J. Chem. Phys.
13
,
014102
(
2009
).
41.
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
S. T.
Elbert
,
M. S.
Gordon
,
J. H.
Jensen
,
S.
Koseki
,
N.
Matsunaga
,
K. A.
Nguyen
,
S. J.
Su
,
T. L.
Windus
,
M.
Dupuis
, and
J. A.
Montgomery
,
J. Comput. Chem.
14
,
1347
1363
(
1993
).
42.
M. X.
Liu
,
L.
Yang
,
Q. Z.
Li
,
W. Z.
Li
,
J. B.
Cheng
,
B.
Xiao
, and
X. F.
Yu
,
J. Mol. Model.
22
,
192
(
2016
).
43.
W. D.
Arnold
and
E.
Oldfield
,
J. Am. Chem. Soc.
122
,
12835
12841
(
2000
).

Supplementary Material

You do not currently have access to this content.