We demonstrate that it is possible to use basis functions that depend on curvilinear internal coordinates to compute vibrational energy levels without deriving a kinetic energy operator (KEO) and without numerically computing coefficients of a KEO. This is done by using a space-fixed KEO and computing KEO matrix elements numerically. Whenever one has an excellent basis, more accurate solutions to the Schrödinger equation can be obtained by computing the KEO, potential, and overlap matrix elements numerically. Using a Gaussian basis and bond coordinates, we compute vibrational energy levels of formaldehyde. We show, for the first time, that it is possible with a Gaussian basis to solve a six-dimensional vibrational Schrödinger equation. For the zero-point energy (ZPE) and the lowest 50 vibrational transitions of H2CO, we obtain a mean absolute error of less than 1 cm−1; with 200 000 collocation points and 40 000 basis functions, most errors are less than 0.4 cm−1.

1.
S.
Carter
and
N. C.
Handy
,
Comput. Phys. Rep.
5
,
117
(
1986
).
2.
3.
J. C.
Light
and
T.
Carrington
, Jr.
,
Adv. Chem. Phys.
114
,
263
(
2000
).
4.
J. M.
Bowman
,
T.
Carrington
, Jr.
, and
H.-D.
Meyer
,
Mol. Phys.
106
,
2145
(
2008
).
5.
W.
Yang
and
A. C.
Peet
,
Chem. Phys. Lett.
153
,
98
104
(
1988
).
6.
I. P.
Hamilton
and
J. C.
Light
,
J. Chem. Phys.
84
,
306
(
1986
).
7.
B.
Poirier
and
J. C.
Light
,
J. Chem. Phys.
113
,
211
(
2000
).
8.
S.
Garashchuk
and
J. C.
Light
,
J. Chem. Phys.
114
,
3929
(
2001
).
9.
W.
Yang
and
A. C.
Peet
,
J. Chem. Phys.
92
,
522
(
1990
).
10.
I.
Baccarelli
,
F. A.
Gianturcb
,
T.
Gonzalez-Lezana
,
G.
Delgado-Barrio
,
S.
Miret-Artes
, and
P.
Villarreal
,
Phys. Rep.
452
,
1
(
2007
).
12.
13.
J.
Laane
,
M. A.
Harthcock
,
P. M.
Killough
,
L. E.
Bauman
, and
J. M.
Cooke
,
J. Mol. Spectrosc.
91
,
286
(
1982
).
14.
M. A.
Harthcock
and
J.
Laane
,
J. Mol. Spectrosc.
91
,
300
(
1982
).
15.
A. B.
McCoy
,
D. C.
Burleigh
, and
E. L.
Sibert
,
J. Chem. Phys.
95
,
7449
(
1991
).
16.
D.
Lauvergnat
and
A.
Nauts
,
J. Chem. Phys.
116
,
8560
(
2002
).
17.
D.
Luckhaus
,
J. Chem. Phys.
113
,
1329
(
2000
).
18.
E.
Mátyus
,
G.
Czakó
, and
A. G.
Császár
,
J. Chem. Phys.
130
,
134112
(
2009
).
19.
C.
Fábri
,
E.
Mátyus
, and
A. G.
Császár
,
J. Chem. Phys.
134
,
074105
(
2011
).
20.
X.-G.
Wang
and
T.
Carrington
,
J. Chem. Phys.
138
,
104106
(
2013
).
21.
S. F.
Boys
,
Proc. R. Soc. A
309
,
195
208
(
1969
).
22.
S.
Manzhos
,
R.
Dawes
, and
T.
Carrington
,
Int. J. Quantum Chem.
115
,
1012
(
2015
).
23.
D. G.
Truhlar
,
R.
Steckler
, and
M. S.
Gordon
,
Chem. Rev.
87
,
217
(
1987
).
24.
G. C.
Schatz
,
Rev. Mod. Phys.
61
,
669
(
1989
).
25.
D. M.
Hirst
,
Potential Energy Surfaces
(
Taylor and Francis
,
London
,
1985
).
26.
B.
Kuhn
,
T. R.
Rizzo
,
D.
Luckhaus
,
M.
Quack
, and
M. A.
Suhm
,
J. Chem. Phys.
111
,
2565
(
1999
).
27.
R.
Marquardt
,
K.
Sagui
,
J.
Zheng
,
W.
Thiel
,
D.
Luckhaus
,
S.
Yurchenko
,
F.
Mariotti
, and
M.
Quack
,
J. Phys. Chem. A
117
,
7502
(
2013
).
28.
Y.
Watanabe
,
S.
Maeda
, and
K.
Ohno
,
Chem. Phys. Lett.
447
,
21
(
2007
).
29.
T.-S.
Ho
and
H.
Rabitz
,
J. Chem. Phys.
104
,
2584
(
1996
).
30.
R.
Dawes
,
D. L.
Thompson
,
Y.
Guo
,
A. F.
Wagner
, and
M.
Minkoff
,
J. Chem. Phys.
126
,
184108
(
2007
).
31.
V.
Szalay
,
J. Chem. Phys.
111
,
8804
(
1999
).
32.
R.
Dawes
,
X.-G.
Wang
,
A. W.
Jasper
, and
T.
Carrington
, Jr.
,
J. Chem. Phys.
133
,
134304
(
2010
).
33.
R.
Dawes
,
A. F.
Wagner
, and
D. L.
Thompson
,
J. Phys. Chem. A
113
,
4709
(
2009
).
34.
M. A.
Collins
,
Theor. Chem. Acc.
108
,
313
(
2002
).
35.
W.
Zhang
,
Y.
Zhou
,
G.
Wu
,
Y.
Lu
,
H.
Pan
,
B.
Fu
,
Q.
Shuai
,
L.
Liu
,
S.
Liu
,
L.
Zhang
,
B.
Jiang
,
D.
Dai
,
S.-Y.
Lee
,
Z.
Xie
,
B. J.
Braams
,
M. A.
Collins
,
D. H.
Zhang
, and
X.
Yang
,
Proc. Natl. Acad. Sci. U. S. A.
107
,
12782
(
2010
).
36.
Y.
Zhou
,
B.
Fu
,
C.
Wang
,
M. A.
Collins
, and
D. H.
Zhang
,
J. Chem. Phys.
134
,
064323
(
2011
).
37.
G. P.
Krishnamohan
,
R. A.
Olsen
,
G.-J.
Kroes
,
F.
Gatti
, and
S.
Woittequand
,
J. Chem. Phys.
133
,
144308
(
2010
).
38.
G.
Czakó
,
B. C.
Shepler
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Chem. Phys.
130
,
084301
(
2009
).
39.
A.
Brown
,
B. J.
Braams
,
K. M.
Christoffel
,
Z.
Jin
, and
J. M.
Bowman
,
J. Chem. Phys.
119
,
8790
(
2003
).
40.
S. C.
Park
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Theor. Comput. Chem.
4
,
163
(
2005
).
41.
X.
Huang
,
B. J.
Braams
, and
J. M.
Bowman
,
J. Chem. Phys.
122
,
044308
(
2005
).
42.
B. J.
Braams
and
J. M.
Bowman
,
Int. Rev. Phys. Chem.
28
,
577
(
2009
).
43.
S.
Manzhos
,
X.-G.
Wang
,
R.
Dawes
, and
T.
Carrington
,
J. Phys. Chem. A
110
,
5295
5304
(
2006
).
44.
S.
Manzhos
and
T.
Carrington
,
J. Chem. Phys.
125
,
084109
(
2006
).
45.
S.
Manzhos
and
T.
Carrington
,
J. Chem. Phys.
127
,
014103
(
2007
).
46.
S.
Manzhos
and
T.
Carrington
,
J. Chem. Phys.
129
,
224104
(
2008
).
47.
M.
Malshe
,
L. M.
Raff
,
M. G.
Rockey
,
M. T.
Hagan
,
P. A.
Agrawal
, and
R.
Komanduri
,
J. Chem. Phys.
127
,
134105
(
2007
).
48.
S.
Manzhos
,
K.
Yamashita
, and
T.
Carrington
,
Chem. Phys. Lett.
474
,
217
(
2009
).
49.
S.
Manzhos
,
T.
Carrington
, and
K.
Yamashita
,
Surf. Sci.
605
,
616
(
2011
).
50.
S.
Manzhos
,
K.
Yamashita
, and
T.
Carrington
,
Chem. Phys. Lett.
511
,
434
(
2011
).
51.
M.
Chan
,
S.
Manzhos
,
T.
Carrington
, and
K.
Yamashita
,
J. Chem. Theory Comput.
8
,
2053
2061
(
2012
).
52.
M.
Chan
,
K.
Yamashita
,
T.
Carrington
, and
S.
Manzhos
,
MRS Proc.
1484
(
2012
).
53.
M.
Chan
,
T.
Carrington
, and
S.
Manzhos
,
Phys. Chem. Chem. Phys.
15
,
10028
(
2013
).
54.
S.
Manzhos
,
M.
Chan
, and
T.
Carrington
,
J. Chem. Phys.
139
,
051101
(
2013
).
55.
S.
Manzhos
,
T.
Carrington
,
L.
Laverdure
, and
N.
Mosey
,
J. Phys. Chem. A
119
,
9557
(
2015
).
56.
G.
Avila
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
143
,
214108
(
2015
).
57.
G.
Avila
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
139
,
134114
(
2013
).
58.
G.
Avila
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
131
,
174103
(
2009
).
59.
A. R.
Hoy
,
I. M.
Mills
, and
G.
Strey
,
Mol. Phys.
24
,
1265
(
1972
).
60.
R.
Quade
,
J. Chem. Phys.
64
,
2783
(
1976
).
61.
E. L.
Sibert
 III
,
J. T.
Hynes
, and
W. P.
Reinhardt
,
J. Chem. Phys.
87
,
2032
(
1983
).
62.
I. M.
Sobol
,
USSR Comput. Math. Math. Phys.
7
,
86
(
1967
).
63.
J. K. G.
Watson
,
Mol. Phys.
15
,
479
(
1968
).
64.
X.
Chapuisat
and
C.
Iung
,
Phys. Rev. A
45
,
6217
(
1992
).
65.
F.
Gatti
and
C.
Iung
,
Phys. Rep.
484
,
1
(
2009
).
66.
M. J.
Bramley
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
99
,
8519
(
1993
).
67.
X.-G.
Wang
and
T.
Carrington
, Jr.
,
J. Chem. Phys.
121
,
2937
(
2004
).
68.
S.
Carter
and
N. C.
Handy
,
J. Mol. Spectrosc.
179
,
65
(
1996
).
69.
S.
Carter
,
N. C.
Handy
, and
J.
Demaison
,
Mol. Phys.
90
,
729
(
1997
).
70.
Matlab Release, 2016a,
The MathWorks, Inc.
,
Natick, MA
,
2016
.
71.
M.
Ndong
,
L.
Joubert Doriol
,
H.-D.
Meyer
,
A.
Nauts
,
F.
Gatti
, and
D.
Lauvergnat
,
J. Chem. Phys.
136
,
034107
(
2012
).

Supplementary Material

You do not currently have access to this content.