The motion of ionic solutes and charged particles under the influence of an electric field and the ensuing hydrodynamic flow of the underlying solvent is ubiquitous in aqueous colloidal suspensions. The physics of such systems is described by a coupled set of differential equations, along with boundary conditions, collectively referred to as the electrokinetic equations. Capuani et al. [J. Chem. Phys. 121, 973 (2004)] introduced a lattice-based method for solving this system of equations, which builds upon the lattice Boltzmann algorithm for the simulation of hydrodynamic flow and exploits computational locality. However, thus far, a description of how to incorporate moving boundary conditions into the Capuani scheme has been lacking. Moving boundary conditions are needed to simulate multiple arbitrarily moving colloids. In this paper, we detail how to introduce such a particle coupling scheme, based on an analogue to the moving boundary method for the pure lattice Boltzmann solver. The key ingredients in our method are mass and charge conservation for the solute species and a partial-volume smoothing of the solute fluxes to minimize discretization artifacts. We demonstrate our algorithm’s effectiveness by simulating the electrophoresis of charged spheres in an external field; for a single sphere we compare to the equivalent electro-osmotic (co-moving) problem. Our method’s efficiency and ease of implementation should prove beneficial to future simulations of the dynamics in a wide range of complex nanoscopic and colloidal systems that were previously inaccessible to lattice-based continuum algorithms.

1.
J. L.
Anderson
,
Annu. Rev. Fluid Mech.
21
,
61
(
1989
).
2.
W. F.
Paxton
,
P. T.
Baker
,
T. R.
Kline
,
Y.
Wang
,
T. E.
Mallouk
, and
A.
Sen
,
J. Am. Chem. Soc.
128
,
14881
(
2006
).
3.
M. E.
Ibele
,
Y.
Wang
,
T. R.
Kline
,
T. E.
Mallouk
, and
A.
Sen
,
J. Am. Chem. Soc.
129
,
7762
(
2007
).
4.
A.
Reinmüller
,
E.
Oğuz
,
R.
Messina
,
H.
Löwen
,
H.
Schöpe
, and
T.
Palberg
,
J. Chem. Phys.
136
,
164505
(
2012
).
5.
R. W.
O’Brien
and
L. R.
White
,
J. Chem. Soc., Faraday Trans. 2
74
,
1607
(
1978
).
6.
M. v.
Smoluchowski
,
Colloid Polym. Sci.
21
,
98
(
1917
).
7.
E.
Hückel
,
Phys. Z.
25
,
204
(
1924
).
8.
D. C.
Henry
,
Proc. R. Soc. London, Ser. A
133
,
106
(
1931
).
9.
W. F.
Paxton
,
K. C.
Kistler
,
C. C.
Olmeda
,
A.
Sen
,
S. K. St.
Angelo
,
Y.
Cao
,
T. E.
Mallouk
,
P. E.
Lammert
, and
V. H.
Crespi
,
J. Am. Chem. Soc.
126
,
13424
(
2004
).
10.
J. L.
Moran
and
J. D.
Posner
,
J. Fluid Mech.
680
,
31
(
2011
).
11.
J. L.
Moran
and
J. D.
Posner
,
Phys. Fluids
26
,
042001
(
2014
).
12.
A.
Brown
and
W. C. K.
Poon
,
Soft Matter
10
,
4016
(
2014
).
13.
S.
Ebbens
,
D.
Gregory
,
G.
Dunderdale
,
J.
Howse
,
Y.
Ibrahim
,
T.
Liverpool
, and
R.
Golestanian
,
Europhys. Lett.
106
,
58003
(
2014
).
14.
B.
Sabass
and
U.
Seifert
,
J. Chem. Phys.
136
,
214507
(
2012
).
15.
A. T.
Brown
,
W. C. K.
Poon
,
C.
Holm
, and
J.
de Graaf
, preprint arXiv:1512.01778 (
2015
).
16.
A. T.
Woolley
and
R. A.
Mathies
,
Anal. Chem.
67
,
3676
(
1995
).
17.
A. S.
Mikheyev
and
M. M.
Tin
,
Mol. Ecol. Resour.
14
,
1097
(
2014
).
18.
I.
Pagonabarraga
,
B.
Rotenberg
, and
D.
Frenkel
,
Phys. Chem. Chem. Phys.
12
,
9566
(
2010
).
19.
L.
Castellanos-Serra
and
E.
Hardy
,
Electrophoresis
22
,
864
(
2001
).
20.
H.
Schägger
and
G.
Von Jagow
,
Anal. Biochem.
166
,
368
(
1987
).
21.
P. J.
Blanche
,
E. L.
Gong
,
T. M.
Forte
, and
A. V.
Nichols
,
Biochim. Biophys. Acta, Lipids Lipid Metab.
665
,
408
(
1981
).
22.
S.
Medina
,
J.
Zhou
,
Z.-G.
Wang
, and
F.
Schmid
,
J. Chem. Phys.
142
,
024103
(
2015
).
23.
J.
Smiatek
and
F.
Schmid
,
Comput. Phys. Commun.
182
,
1941
(
2011
), Computer Physics Communications Special Edition for Conference on Computational Physics Trondheim, Norway, June 23–26, 2010.
24.
S.
Frank
and
R. G.
Winkler
,
Europhys. Lett.
83
,
38004
(
2008
).
25.
S.
Frank
and
R. G.
Winkler
,
J. Chem. Phys.
131
,
234905
(
2009
).
26.
R.
Lewis
and
R.
Garner
,
Int. J. Numer. Methods Eng.
5
,
41
(
1972
).
27.
S. A.
Allison
and
Y.
Xin
,
J. Colloid Interface Sci.
288
,
616
(
2005
).
28.
J. J.
Hoyt
and
W. G.
Wolfer
,
Electrophoresis
19
,
2432
(
1998
).
29.
D. L.
House
, “
Applications of the boundary-element method for electrokinetics in microfluidics
,” Ph.D. thesis,
Vanderbilt University
,
2012
.
30.
R.
Schmitz
and
B.
Dünweg
,
J. Phys.: Condens. Matter
24
,
464111
(
2012
).
31.
S.-I.
Jeong
,
J.
Seyed-Yagoobi
, and
P.
Atten
,
IEEE Trans. Ind. Appl.
39
,
355
(
2003
).
32.
F.
Capuani
,
I.
Pagonabarraga
, and
D.
Frenkel
,
J. Chem. Phys.
121
,
973
(
2004
).
33.
P. B.
Warren
,
Int. J. Mod. Phys. C
8
,
889
(
1997
).
34.
Y.
Nakayama
,
K.
Kim
, and
R.
Yamamoto
,
Eur. Phys. J. E
26
,
361
(
2008
).
35.
B.
Rotenberg
and
I.
Pagonabarraga
,
Mol. Phys.
111
,
827
(
2013
).
36.
H. S.
White
and
A.
Bund
,
Langmuir
24
,
2212
(
2008
).
37.
W.-J.
Lan
,
D. A.
Holden
,
B.
Zhang
, and
H. S.
White
,
Anal. Chem.
83
,
3840
(
2011
).
38.
G.
Rempfer
,
S.
Ehrhardt
,
C.
Holm
, and
J.
de Graaf
, “
Nanoparticle Translocation through Conical Nanopores: A Finite Element Study of Electrokinetic Transport
,”
Macromol. Theor. Simul.
(published online,
2016
).
39.
P.
Kreissl
,
C.
Holm
, and
J.
de Graaf
,
J. Chem. Phys.
144
,
204902
(
2016
).
40.
S.
Qian
and
S. W.
Joo
,
Langmuir
24
,
4778
(
2008
).
41.
W.
Wang
,
W.
Duan
,
A.
Sen
, and
T. E.
Mallouk
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
17744
(
2013
).
42.
T.-Y.
Chiang
and
D.
Velegol
,
Langmuir
30
,
2600
(
2014
).
43.
V.
Mengeaud
,
J.
Josserand
, and
H. H.
Girault
,
Anal. Chem.
74
,
4279
(
2002
).
44.
F.
Bianchi
,
R.
Ferrigno
, and
H.
Girault
,
Anal. Chem.
72
,
1987
(
2000
).
45.
F.
Yang
,
S.
Qian
,
Y.
Zhao
, and
R.
Qiao
,
Langmuir
32
,
5580
(
2016
).
46.
G. R.
McNamara
and
G.
Zanetti
,
Phys. Rev. Lett.
61
,
2332
(
1988
).
47.
B.
Dünweg
and
A. J. C.
Ladd
, in
Advanced Computer Simulation Approaches for Soft Matter Sciences III
, Advances in Polymer Science (
Springer-Verlag Berlin
,
Berlin, Germany
,
2009
), Vol. 221, pp.
89
166
.
48.
A.
Scagliarini
and
I.
Pagonabarraga
, preprint arXiv:1605.03773 (
2016
).
49.
F.
Schornbaum
and
U.
Rüde
,
SIAM J. Sci. Comput.
38
,
C96
(
2016
).
50.
G.
Giupponi
and
I.
Pagonabarraga
,
Phys. Rev. Lett.
106
,
248304
(
2011
).
51.
B.
Rotenberg
,
I.
Pagonabarraga
, and
D.
Frenkel
,
Europhys. Lett.
83
,
34004
(
2008
).
52.
A.
Obliger
,
M.
Jardat
,
D.
Coelho
,
S.
Bekri
, and
B.
Rotenberg
,
Phys. Rev. E
89
,
043013
(
2014
).
53.
S.
Reboux
,
F.
Capuani
,
N.
Gonzales-Segredo
, and
D.
Frenkel
,
J. Chem. Theory Comput.
2
,
495
(
2006
).
54.
A. J. C.
Ladd
,
J. Fluid Mech.
271
,
285
(
1994
).
55.
C. K.
Aidun
,
Y.
Lu
, and
E.-J.
Ding
,
J. Fluid Mech.
373
,
287
(
1998
).
56.
J.
de Graaf
,
G.
Rempfer
, and
C.
Holm
,
IEEE Trans. NanoBiosci.
14
,
272
(
2015
).
57.
G.
Rempfer
,
G. B.
Davies
,
C.
Holm
, and
J.
de Graaf
,
J. Chem. Phys.
145
,
044901
(
2016
).
58.
I.
Ginzburg
,
F.
Verhaeghe
, and
D.
d’Humières
,
Commun. Comput. Phys.
3
,
427
(
2008
).
59.
I.
Ginzburg
,
F.
Verhaeghe
, and
D.
d’Humières
,
Commun. Comput. Phys.
3
,
519
(
2008
).
60.
Z.
Guo
,
C.
Zheng
, and
B.
Shi
,
Phys. Rev. E
65
,
046308
(
2002
).
61.
U. D.
Schiller
, “
Thermal fluctuations and boundary conditions in the lattice Boltzmann method
,” Ph.D. thesis,
Johannes Gutenberg-Universität Mainz
,
2008
.
62.
U. D.
Schiller
,
Comput. Phys. Commun.
185
,
2586
(
2014
).
63.
Q.
Zou
and
X.
He
,
Phys. Fluids
9
,
1591
(
1997
).
64.
B.
Dünweg
,
U.
Schiller
, and
A. J. C.
Ladd
,
Phys. Rev. E
76
,
36704
(
2007
).
65.
P.
Ahlrichs
and
B.
Dünweg
,
Int. J. Mod. Phys. C
9
,
1429
(
1998
).
66.
C.
Lowe
,
D.
Frenkel
, and
A.
Masters
,
J. Chem. Phys.
103
,
1582
(
1995
).
67.
J.-P.
Péraud
,
A.
Nonaka
,
A.
Chaudhri
,
J. B.
Bell
,
A.
Donev
, and
A. L.
Garcia
,
Phys. Rev. Fluids
1
,
074103
(
2016
).
68.
J.
Zudrop
,
S.
Roller
, and
P.
Asinari
,
Phys. Rev. E
89
,
053310
(
2014
).
69.
C.
Godenschwager
,
F.
Schornbaum
,
M.
Bauer
,
H.
Köstler
, and
U.
Rüde
, in
Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis
(
ACM
,
2013
), p.
35
.
70.
V.
Lobaskin
,
B.
Dünweg
,
M.
Medebach
,
T.
Palberg
, and
C.
Holm
,
Phys. Rev. Lett.
98
,
176105
(
2007
).
71.
N.
Garbow
,
M.
Evers
,
T.
Palberg
, and
T.
Okubo
,
J. Phys.: Condens. Matter
16
,
3835
(
2004
).
72.
M.
Medebach
and
T.
Palberg
,
J. Phys.: Condens. Matter
16
,
5653
(
2004
).
73.
T.
Palberg
,
M.
Medebach
,
N.
Garbow
,
M.
Evers
,
A. B.
Fontecha
,
H.
Reiber
, and
E.
Bartsch
,
J. Phys.: Condens. Matter
16
,
4039
(
2004
).
74.
P. H.
Wiersema
,
A. L.
Loeb
, and
J. T.
Overbeek
,
J. Colloid Interface Sci.
22
,
78
(
1966
).
75.
L. P.
Fischer
,
T.
Peter
,
C.
Holm
, and
J.
de Graaf
,
J. Chem. Phys.
143
,
084107
(
2015
).
76.
J.
de Graaf
,
T.
Peter
,
L. P.
Fischer
, and
C.
Holm
,
J. Chem. Phys.
143
,
084108
(
2015
).
You do not currently have access to this content.