Density functional theory (DFT) at the generalised gradient approximation level is employed within the periodic electrostatic embedded cluster method (PEECM) to model the brucite (0001) surface. Three representative studies are then used to demonstrate the reliability of the PEECM for the description of the interactions of various ionic species with the layered Mg(OH)2 structure, and its performance is compared with periodic DFT, an approach known to be challenging for the adsorption of charged species. The adsorption energies of a series of s block cations, including Sr2+ and Cs+ which are known to coexist with brucite in nuclear waste storage ponds, are well described by the embedded cluster model, provided that basis sets of triple-zeta quality are employed for the adsorbates. The substitution energies of Ca2+ and Sr2+ into brucite obtained with the PEECM are very similar to periodic DFT results, and comparison of the approaches indicates that two brucite layers in the quantum mechanical part of the PEECM are sufficient to describe the substitution. Finally, a detailed comparison of the periodic and PEECM DFT approaches to the energetic and geometric properties of differently coordinated Sr[(OH)2(H2O)4] complexes on brucite shows an excellent agreement in adsorption energies, Sr–O distances, and bond critical point electron densities (obtained via the quantum theory of atoms-in-molecules), demonstrating that the PEECM can be a useful alternative to periodic DFT in these situations.

1.
S.
Chrétien
and
H.
Metiu
,
J. Chem. Phys.
126
,
104701
(
2007
).
2.
S. A.
Fuente
,
C. A.
Ferretti
,
N. F.
Domancich
,
V. K.
Díez
,
C. R.
Apesteguía
,
J. I.
Di Cosimo
,
R. M.
Ferullo
, and
N. J.
Castellani
,
Appl. Surf. Sci.
327
,
268
(
2015
).
3.
S.
Rangarajan
and
M.
Mavrikakis
,
ACS Catal.
6
,
2904
(
2016
).
4.
J. R. B.
Gomes
and
J. A. N. F.
Gomes
,
J. Electroanal. Chem.
483
,
180
(
2000
).
5.
X.-Y.
Pang
,
C.
Wang
,
Y.-H.
Zhou
,
J.-M.
Zhao
, and
G.-C.
Wang
,
J. Mol. Struct.: THEOCHEM
948
,
1
(
2010
).
6.
D.
Costa
,
P.-A.
Garrain
, and
M.
Baaden
,
J. Biomed. Mater. Res., Part A
101A
,
1210
(
2013
).
7.
S.
Kerisit
,
P.
Zarzycki
, and
K. M.
Rosso
,
J. Phys. Chem. C
119
,
9242
(
2015
).
8.
J.
Setiadi
,
M. D.
Arnold
, and
M. J.
Ford
,
ACS Appl. Mater. Interfaces
5
,
10690
(
2013
).
9.
H.
Weber
,
T.
Bredow
, and
B.
Kirchner
,
J. Phys. Chem. C
119
,
15137
(
2015
).
10.
M. P.
Andersson
,
H.
Sakuma
, and
S. L. S.
Stipp
,
Langmuir
30
,
6129
(
2014
).
11.
J. A.
Greathouse
,
R. J.
O’Brien
,
G.
Bemis
, and
R. T.
Pabalan
,
J. Phys. Chem. B
106
,
1646
(
2002
).
12.
J. D.
Kubicki
,
K. D.
Kwon
,
K. W.
Paul
, and
D. L.
Sparks
,
Eur. J. Soil Sci.
58
,
932
(
2007
).
13.
S.
Lectez
,
J.
Roques
,
M.
Salanne
, and
E.
Simoni
,
J. Chem. Phys.
137
,
154705
(
2012
).
14.
E.
Veilly
,
J.
Roques
,
M.-C.
Jodin-Caumon
,
B.
Humbert
,
R.
Drot
, and
E.
Simoni
,
J. Chem. Phys.
129
,
244704
(
2008
).
15.
S. E.
Mason
,
C. R.
Iceman
,
K. S.
Tanwar
,
T. P.
Trainor
, and
A. M.
Chaka
,
J. Phys. Chem. C
113
,
2159
(
2009
).
16.
S. E.
Mason
,
T. P.
Trainor
, and
A. M.
Chaka
,
J. Phys. Chem. C
115
,
4008
(
2011
).
17.
K. W.
Corum
and
S. E.
Mason
,
Mol. Simul.
41
,
146
(
2015
).
18.
S.
Yang
,
C.
Chen
,
Y.
Chen
,
J.
Li
,
D.
Wang
,
X.
Wang
, and
W.
Hu
,
ChemPlusChem
80
,
480
(
2015
).
19.
S. K.
Ramadugu
and
S. E.
Mason
,
J. Phys. Chem. C
119
,
18149
(
2015
).
20.
G.
García
,
M.
Atilhan
, and
S.
Aparicio
,
Phys. Chem. Chem. Phys.
17
,
16315
(
2015
).
21.
R.
Dovesi
,
B.
Civalleri
,
R.
Orlando
,
C.
Roetti
,
V. R.
Saunders
, in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
,
R.
Larter
, and
T. R.
Cundari
(
Wiley-VCH
,
2005
).
22.
G.
Pacchioni
,
J. Chem. Phys.
128
,
182505
(
2008
).
23.
V.
Ballenegger
,
A.
Arnold
, and
J. J.
Cerdà
,
J. Chem. Phys.
131
,
094107
(
2009
).
24.
S. C.
Ammal
and
A.
Heyden
,
J. Chem. Phys.
133
,
164703
(
2010
).
25.
J.
Carrasco
,
N.
Lopez
,
F.
Illas
, and
H.-J.
Freund
,
J. Chem. Phys.
125
,
074711
(
2006
).
26.
C. A.
Gilbert
,
R.
Smith
, and
S. D.
Kenny
,
Nucl. Instrum. Methods Phys. Res., Sect. B
255
,
166
(
2007
).
27.
A. M.
Burow
,
M.
Sierka
,
J.
Döbler
, and
J.
Sauer
,
J. Chem. Phys.
130
,
174710
(
2009
).
28.
A. V.
Bandura
,
D. G.
Sykes
,
V.
Shapovalov
,
T. N.
Troung
,
J. D.
Kubicki
, and
R. A.
Evarestov
,
J. Phys. Chem. B
108
,
7844
(
2004
).
29.
B.
Herschend
,
M.
Baudin
, and
K.
Hermansson
,
Chem. Phys.
328
,
345
(
2006
).
30.
J. L. F.
Da Silva
,
M. V.
Ganduglia-Pirovano
,
J.
Sauer
,
V.
Bayer
, and
G.
Kresse
,
Phys. Rev. B
75
,
045121
(
2007
).
31.
TURBOMOLE Version 6.5 User’s Manual, Program Package for ab initio Electronic Structure Calculations,
2012
, pp.
132
139
.
32.
K. N.
Kudin
and
G. E.
Scuseria
,
Chem. Phys. Lett.
283
,
61
(
1998
).
33.
Sellafield Ltd.
, Sellafield Integrated Waste Strategy Version 2 Report and Recommendations,
2007
.
34.
C. R.
Gregson
,
D. T.
Goddard
,
M. J.
Sarsfield
, and
R. J.
Taylor
,
J. Nucl. Mater.
412
,
145
(
2011
).
35.
S.
Owens
,
M.
Higgins-Bos
,
M.
Bankhead
, and
J.
Austin
,
NNL Sci.
(
3
),
4
(
2015
).
36.
X.
Tan
,
M.
Fang
, and
X.
Wang
,
Molecules
15
,
8431
(
2010
).
37.
T.
Hattori
,
T.
Saito
,
K.
Ishida
,
A. C.
Scheinost
,
T.
Tsuneda
,
S.
Nagasaki
, and
S.
Tanaka
,
Geochim. Cosmochim. Acta
73
,
5975
(
2009
).
38.
A.
Kremleva
,
S.
Krüger
, and
N.
Rösch
,
J. Phys. Chem. C
120
,
324
(
2016
).
39.
F. M.
Higgins
,
N. H.
de Leeuw
, and
S. C.
Parker
,
J. Mater. Chem.
12
,
124
(
2002
).
40.
M.
Johnson
,
D.
O’Connor
,
P.
Barnes
,
C. R. A.
Catlow
,
S. L.
Owens
,
G.
Sankar
,
R.
Bell
,
S. J.
Teat
, and
R.
Stephenson
,
J. Phys. Chem. B
107
,
942
(
2003
).
41.
M.
Catti
,
G.
Ferraris
,
S.
Hull
, and
A.
Pavese
,
Phys. Chem. Miner.
22
,
200
(
1995
).
42.
F.
Zigan
and
R.
Rothbauer
,
Neues Jahrb. Fuer Miner. Monatshefte
4
,
137
(
1967
).
43.
R.
LeSar
and
R. G.
Gordon
,
Phys. Rev. B
25
,
7221
(
1982
).
44.
P.
D’Arco
,
M.
Causà
,
C.
Roetti
, and
B.
Silvi
,
Phys. Rev. B
47
,
3522
(
1993
).
45.
B.
Winkler
,
V.
Milman
,
B.
Hennion
,
M. C.
Payne
,
M.-H.
Lee
, and
J. S.
Lin
,
Phys. Chem. Miner.
22
,
461
(
1995
).
46.
P.
Baranek
,
A.
Lichanot
,
R.
Orlando
, and
R.
Dovesi
,
Chem. Phys. Lett.
340
,
362
(
2001
).
47.
F.
Pascale
,
S.
Tosoni
,
C.
Zicovich-Wilson
,
P.
Ugliengo
,
R.
Orlando
, and
R.
Dovesi
,
Chem. Phys. Lett.
396
,
308
(
2004
).
48.
P.
Ugliengo
,
C. M.
Zicovich-Wilson
,
S.
Tosoni
, and
B.
Civalleri
,
J. Mater. Chem.
19
,
2564
(
2009
).
49.
K.
Azuma
,
T.
Oda
, and
S.
Tanaka
,
Comput. Theor. Chem.
963
,
215
(
2011
).
50.
A. M.
Chaka
and
A. R.
Felmy
,
J. Phys. Chem. A
118
,
7469
(
2014
).
51.
M. B.
Kruger
,
Q.
Williams
, and
R.
Jeanloz
,
J. Chem. Phys.
91
,
5910
(
1989
).
52.
D. E.
Haycock
,
M.
Kasrai
,
C. J.
Nicholls
, and
D. S.
Urch
,
J. Chem. Soc. Dalton. Trans.
12
,
1791
(
1978
).
53.
J. D.
Bernal
and
H. D.
Megaw
,
Proc. R. Soc. A
151
,
384
(
1935
).
54.
G.
Wulff
,
Zeitschrift Fur Kryst. Und Mineral
34
,
449
(
1901
).
55.
M. R.
Carrott
,
P.
Carrott
,
M. B.
de Carvalho
, and
K. S. W.
Sing
,
J. Chem. Soc. Faraday Trans.
87
,
185
(
1991
).
56.
A.
Kerridge
and
N.
Kaltsoyannis
,
Chem. - Eur. J.
17
,
5060
(
2011
).
57.
A.
Kerridge
and
N.
Kaltsoyannis
,
Dalton Trans.
40
,
11258
(
2011
).
58.
E.
Makkos
,
A.
Kerridge
, and
N.
Kaltsoyannis
,
Dalton Trans.
44
,
11572
(
2015
).
59.
E. H.
Teunissen
,
A. P. J.
Jansen
,
R. A.
van Santen
,
R.
Orlando
, and
R.
Dovesi
,
J. Chem. Phys.
101
,
5865
(
1994
).
60.
J. M.
Vollmer
,
E.
V Stefanovich
, and
T. N.
Truong
,
J. Phys. Chem. B
103
,
9415
(
1999
).
61.
TURBOMOLE V6.6 2014, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmBH since 2007, available from www.turbomole.com.
62.
K.
Eichkorn
,
O.
Treutler
,
H.
Öhm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
242
,
652
(
1995
).
63.
P.
Ugliengo
,
G.
Borzani
, and
D.
Viterbo
,
J. Appl. Crystallogr.
21
,
75
(
1988
).
64.
J.
Tao
,
J. P.
Perdew
,
V. N.
Staroverov
, and
G. E.
Scuseria
,
Phys. Rev. Lett.
91
,
146401
(
2003
).
65.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
66.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
,
Theor. Chem. Acc.
97
,
119
(
1997
).
67.

For the 6×6_1+PC surface representation, the lower hydrogen atoms were also constrained during optimisation.

68.
J. P. W.
Wellington
,
A.
Kerridge
, and
N.
Kaltsoyannis
,
Polyhedron
116
,
57
(
2016
).
69.
A. E.
Reed
,
R. B.
Weinstock
, and
F.
Weinhold
,
J. Chem. Phys.
83
,
735
(
1985
).
70.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
71.
M.
Kaupp
,
P. v R.
Schleyer
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
94
,
1360
(
1991
).
72.
W.
Zou
,
D.
Nori-Shargh
, and
J. E.
Boggs
,
J. Phys. Chem. A
117
,
207
(
2013
).
73.
T.
Lu
and
F.
Chen
,
J. Comput. Chem.
33
,
580
(
2012
).
74.

This Image Was Made with VMD Software Support. VMD Is Developed with NIH Support by the Theoretical and Computational Biophysics Group at the Beckman Institute, University of Illinois at Urbana-Champaign. Http://www.ks.uiuc.edu/.

75.
T. A.
Keith
, AIMALL (Version 13.11.04);
T. A.
Keith
, TK Gristmill Software, Overl. Park, KS, USA, (aim.tkgristmill.com) (
2013
).
76.
R.
Dovesi
,
V. R.
Saunders
,
C.
Roetti
,
R.
Orlando
,
C. M.
Zicovich-Wilson
,
F.
Pascale
,
B.
Civalleri
,
K.
Doll
,
N. M.
Harrison
,
I. J.
Bush
,
P.
D’Arco
,
M.
Llunell
,
M.
Causà
, and
Y.
Noël
,
CRYSTAL14 User’s Manual
(
University of Torino
,
Torino
,
2014
).
77.
R.
Dovesi
,
R.
Orlando
,
A.
Erba
,
C. M.
Zicovich-Wilson
,
B.
Civalleri
,
S.
Casassa
,
L.
Maschio
,
M.
Ferrabone
,
M.
De La Pierre
,
P.
D’Arco
,
Y.
Noël
,
M.
Causà
,
M.
Rérat
, and
B.
Kirtman
,
Int. J. Quantum Chem.
114
,
1287
(
2014
).
78.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
79.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
80.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
81.
M. F.
Peintinger
,
D. V.
Oliveira
, and
T.
Bredow
,
J. Comput. Chem.
34
,
451
(
2013
).
82.
A.
Erba
,
K. E.
El-Kelany
,
M.
Ferrero
,
I.
Baraille
, and
M.
Rérat
,
Phys. Rev. B
88
,
035102
(
2013
).
83.
J. L. F.
Da Silva
,
C.
Stampfl
, and
M.
Scheffler
,
Surf. Sci.
600
,
703
(
2006
).
84.

Since we were using the same computational parameters, the calculated energies were essentially the same for isolated systems in vacuum with both CRYSTAL14 and TURBOMOLE with less than 10−6 a.u. difference.

85.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
86.

We explored further the effect of higher quality basis sets by using def2-QZVP for test calculations on single layered systems and found that the use of quadruple-ζ basis sets seemed to result in only a constant shift in adsorption energies when compared to triple-ζ results. (see supplementary material, Table (ix)).

87.

Magnesium adsorption effectively incorporates an extra Mg ion into the Mg(OH)2 crystal structure; the ion-surface distance is much smaller in this case and the interaction much stronger, see supplementary material Figure (i).

88.

We did not calculate the BSSE in CRYSTAL since it largely depends on the geometry and the basis functions employed, both of which are almost the same in the two methods. Hence we expect the BSSE to be very similar in the two models. Besides, the relative adsorption energies, in which we are primarily interested, are largely unaffected by this type of error.

89.
C. F.
Matta
and
R. J.
Boyd
, “
An introduction to the quantum theory of atoms in molecules
,” in
The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design
(
WILEY-VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2007
).
90.
R. F. W.
Bader
,
Atoms in Molecules: A Quantum Theory
(
Oxford University Press
,
New York
,
1990
).
91.
A. R. E.
Mountain
and
N.
Kaltsoyannis
,
Dalton. Trans.
42
,
13477
(
2013
).
92.
S. J.
Grabowski
,
J. Phys. Org. Chem.
17
,
18
(
2004
).
93.
B.
Bankiewicz
,
P.
Matczak
, and
M.
Palusiak
,
J. Phys. Chem. A
116
,
452
(
2012
).
94.
I.
Alkorta
,
I.
Rozas
, and
J.
Elguero
,
Struct. Chem.
9
,
243
(
1998
).

Supplementary Material

You do not currently have access to this content.