We report a molecular dynamics study on the effect of electronic polarization on the structure and single-particle dynamics of mixtures of the aprotic ionic liquid 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide ([EMIM][TFSI]) doped with a lithium salt with the same anion at 298 K and 1 bar. In particular, we analyze the effect of electron density fluctuations on radial distribution functions, velocity autocorrelation functions, cage correlation functions, mean-squared displacements, and vibrational densities of states, comparing the predictions of the quantum-chemistry-based Atomistic Polarizable Potential for Liquids, Electrolytes, & Polymers (APPLE&P) with those of its nonpolarizable version and those of the standard non-polarizable Optimized Potentials for Liquid Simulations-All Atom (OPLS-AA). We found that the structure of the mixture is scarcely modified by the fluctuations in electron charge of their constituents, but their transport properties are indeed quite drastically changed, with larger mobilities being predicted for the different species in the bulk mixtures with the polarizable force field. Specifically, the mean-squared displacements are larger for the polarizable potentials at identical time intervals and the intermediate subdiffusive plateaus are greatly reduced, so the transition to the diffusive regime takes place much earlier than in the non-polarizable media. Moreover, the correlations of the added cations inside their cages are weakened out earlier and their vibrational densities of states are slightly red-shifted, reflecting the weakening effect of the electronic polarization on the Coulomb coupling in these dense ionic media. The comparison of OPLS-AA with non-polarizable APPLE&P indicates that adding polarization to OPLS-AA is not sufficient to achieve results close to experiments.

1.
R. D.
Rogers
and
K. R.
Seddon
,
Science
302
,
792
(
2003
).
2.
P.
Wasserscheid
and
T.
Welton
,
Ionic Liquids in Synthesis
(
Wiley Online Library
,
2003
).
3.
J.
Dupont
,
R. F.
de Souza
, and
P. A. Z.
Suarez
,
Chem. Rev.
102
,
3667
(
2002
).
4.
M. V.
Fedorov
and
A. A.
Kornyshev
,
Chem. Rev.
114
,
2978
(
2014
).
5.
S.
Seki
,
Y.
Kobayashi
,
H.
Miyashiro
,
Y.
Ohno
,
A.
Usami
,
Y.
Mita
,
N.
Kihira
,
M.
Watanabe
, and
N.
Terada
,
J. Phys. Chem. B
110
,
10228
(
2006
).
6.
G. B.
Appetecchi
,
M.
Montanino
,
A.
Balducci
,
S. F.
Lux
,
M.
Winterb
, and
S.
Passerini
,
J. Power Sources
192
,
599
(
2009
).
7.
J.
Lassègues
,
J.
Grondin
,
C.
Aupetit
, and
P.
Johansson
,
J. Phys. Chem. A
113
,
305
(
2009
).
8.
F.
Castiglione
,
E.
Ragg
,
A.
Mele
,
G. B.
Appetecchi
,
M.
Montanino
, and
S.
Passerini
,
J. Phys. Chem. Lett.
2
,
153
(
2011
).
9.
Z.
Li
,
G. D.
Smith
, and
D.
Bedrov
,
J. Phys. Chem. B
116
,
12801
(
2012
).
10.
T.
Méndez-Morales
,
J.
Carrete
,
S.
Bouzón-Capelo
,
M.
Pérez-Rodríguez
,
O.
Cabeza
,
L. J.
Gallego
, and
L. M.
Varela
,
J. Phys. Chem. B
117
,
3207
(
2013
).
11.
V.
Lesch
,
S.
Jeremias
,
A.
Moretti
,
S.
Passerini
,
A.
Heuer
, and
O.
Borodin
,
J. Phys. Chem. B
118
,
7367
(
2014
).
12.
Z.
Li
,
O.
Borodin
,
G. D.
Smith
, and
D.
Bedrov
,
J. Phys. Chem. B
119
,
3085
(
2015
).
13.
V.
Lesch
,
Z.
Li
,
D.
Bedrov
,
O.
Borodin
, and
A.
Heuer
,
Phys. Chem. Chem. Phys.
18
,
382
(
2016
).
14.
O.
Borodin
,
Mater. Res. Soc. Proc.
1082
,
Q06
(
2008
).
15.
J. N. C.
Lopes
and
A. A.
Pádua
,
Theor. Chem. Acc.
131
,
1
(
2012
).
16.
F.
Dommert
,
K.
Wendler
,
R.
Berger
,
L.
Delle Site
, and
C.
Holm
,
ChemPhysChem
13
,
1625
(
2012
).
17.
O.
Russina
,
R.
Caminiti
,
T.
Méndez-Morales
,
J.
Carrete
,
O.
Cabeza
,
L.
Gallego
,
L.
Varela
, and
A.
Triolo
,
J. Mol. Liq.
205
,
16
(
2015
).
18.
D.
Bedrov
,
O.
Borodin
,
Z.
Li
, and
G. D.
Smith
,
J. Phys. Chem. B
114
,
4984
(
2010
).
19.
T.
Yan
,
C. J.
Burnham
,
M. G. D.
Pópolo
, and
G. A.
Voth
,
J. Phys. Chem. B
108
,
11877
(
2004
).
20.
O.
Borodin
,
G. D.
Smith
, and
W.
Henderson
,
J. Phys. Chem. B
110
,
16879
(
2006
).
21.
O.
Borodin
,
J. Phys. Chem. B
113
,
11463
(
2009
).
22.
G. D.
Smith
,
O.
Borodin
,
S. P.
Russo
,
R. J.
Rees
, and
A. F.
Hollenkamp
,
Phys. Chem. Chem. Phys.
11
,
9884
(
2009
).
23.
C. J. F.
Solano
,
S.
Jeremias
,
E.
Paillard
,
D.
Beljonne
, and
R.
Lazzaroni
,
J. Chem. Phys.
139
,
034502
(
2013
).
24.
C.
Schröder
,
T.
Sonnleitner
,
R.
Buchner
, and
O.
Steinhauser
,
Phys. Chem. Chem. Phys.
13
,
12240
(
2011
).
25.
M.
Schmollngruber
,
V.
Lesch
,
C.
Schröder
,
A.
Heuer
, and
O.
Steinhauser
,
Phys. Chem. Chem. Phys.
17
,
14297
(
2015
).
26.
C.
Schröder
,
Phys. Chem. Chem. Phys.
14
,
3089
(
2012
).
27.
W. L.
Jorgensen
,
J. Phys. Chem.
90
,
1276
(
1986
).
28.
T.
Mendez-Morales
,
J.
Carrete
,
J. R.
Rodriguez
,
O.
Cabeza
,
L. J.
Gallego
,
O.
Russina
, and
L. M.
Varela
,
Phys. Chem. Chem. Phys.
17
,
5298
(
2015
).
29.
A.
Stone
,
The Theory of Intermolecular Forces
(
Oxford University Press
,
2013
).
30.
H.
Yu
and
W. F.
van Gunsteren
,
Comput. Phys. Commun.
172
,
69
(
2005
).
31.
C.
Schröder
and
O.
Steinhauser
,
J. Chem. Phys.
133
,
154511
(
2010
).
32.
D. V. D.
Spoel
,
E.
Lindahl
,
B.
Hess
,
A. R. V.
Buuren
,
E.
Apol
,
P. J.
Meulenhoff
,
D. P.
Tieleman
,
A. L. T. M.
Sijbers
,
K. A.
Feenstra
,
R. V.
Drunen
, and
H. J. C.
Berendsen
, Gromacs User Manual Version 4.6.7,
2014
, http://www.Gromacs.org.
33.
J. N.
Canongia-Lopes
and
A. A. H.
Pádua
,
J. Phys. Chem. B
108
,
16893
(
2004
).
34.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
35.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
,
J. Comput. Chem.
18
,
1463
(
1997
).
36.
B.
Hess
,
J. Chem. Theory Comput.
4
,
116
(
2007
).
37.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
,
J. Chem. Phys.
126
,
014101
(
2007
).
38.
M.
Parrinello
and
A.
Rahman
,
J. Appl. Phys.
52
,
7182
(
1981
).
39.
D. A.
Case
,
T. A.
Darden
,
T. E. I.
Cheatham
,
C. L.
Simmerling
,
J.
Wang
,
R. E.
Duke
,
R.
Luo
,
M.
Crowley
,
R. C.
Walker
,
W.
Zhang
 et al, AMBER 10, University of California, San Francisco (
2008
), available at https://infoscience.epfl.ch/record/121435/files/Amber10i.pdf.
40.
S.
Niu
,
Z.
Cao
,
S.
Li
, and
T.
Yan
,
J. Phys. Chem. B
114
,
877
(
2010
).
41.
D. M.
Seo
,
O.
Borodin
,
S.-D.
Han
,
P. D.
Boyle
, and
W. A.
Henderson
,
J. Electrochem. Soc.
159
,
A1489
(
2012
).
42.
J.
Pitawala
,
A.
Martinelli
,
P.
Johansson
,
P.
Jacobsson
, and
A.
Matic
,
J. Non-Cryst. Solids
407
,
318
(
2015
).
43.
V.
Lesch
,
A.
Heuer
,
C.
Holm
, and
J.
Smiatek
,
Phys. Chem. Chem. Phys.
17
,
8480
(
2015
).
44.
C.
Schröder
,
J. Chem. Phys.
135
,
024502
(
2011
).
45.
M. G. D.
Pópolo
and
G. A.
Voth
,
J. Phys. Chem. B
108
,
1744
(
2004
).
46.
T.
Méndez-Morales
,
J.
Carrete
,
O.
Cabeza
,
L. J.
Gallego
, and
L. M.
Varela
,
J. Phys. Chem. B
115
,
6995
(
2011
).
47.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
(
Academic Press
,
2001
), Vol. 1.
48.
T.
Kato
,
K.
Machida
,
M.
Oobatake
, and
S.
Hayashi
,
J. Chem. Phys.
89
,
3211
(
1988
).
49.
K.
Wendler
,
M.
Brehm
,
F.
Malberg
,
B.
Kirchner
, and
L.
delle Sitte
,
J. Chem. Theory Comput.
8
,
1570
(
2012
).
50.
R.
Ramírez
,
T.
López-Ciudad
,
P.
Padma Kumar
, and
D.
Marx
,
J. Chem. Phys.
121
,
3973
(
2004
).
51.
H.
Parkhurst
, Jr.
and
J.
Jonas
,
J. Chem. Phys.
63
,
2698
(
1975
).
52.
L.
Sun
,
O.
Morales-Collazo
,
H.
Xia
, and
J. F.
Brennecke
,
J. Phys. Chem. B
119
,
15030
(
2015
).
You do not currently have access to this content.