The van der Waals C6 coefficients of fullerenes are shown to exhibit an anomalous dependence on the number of carbon atoms N such that C6N2.2 as predicted using state-of-the-art quantum mechanical calculations based on fullerenes with small sizes, and N2.75 as predicted using a classical-metallic spherical-shell approximation of the fullerenes. We use an atomistic electrodynamics model where each carbon atom is described by a polarizable object to extend the quantum mechanical calculations to larger fullerenes. The parameters of this model are optimized to describe accurately the static and complex polarizabilities of the fullerenes by fitting against accurate ab initio calculations. This model shows that C6N2.8, which is supportive of the classical-metallic spherical-shell approximation. Additionally, we show that the anomalous dependence of the polarizability on N is attributed to the electric charge term, while the dipole–dipole term scales almost linearly with the number of carbon atoms.

1.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
P. C.
Eklund
,
Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications
(
Academic Press
,
1995
).
2.
J.
Cioslowski
,
Electronic Structure Calculations on Fullerenes and Their Derivatives
(
Oxford University Press
,
Oxford
,
1995
).
3.
K.
Bonin
and
V.
Kresin
,
Electric-Dipole Polarizabilities of Atoms, Molecules, and Clusters
(
World Scientific
,
Singapore
,
1997
).
4.
J.
Kauczor
,
P.
Norman
, and
W. A.
Saidi
,
J. Chem. Phys.
138
,
114107
(
2013
).
5.
P.
Norman
,
D. M.
Bishop
,
H. J. A.
Jensen
, and
J.
Oddershede
,
J. Chem. Phys.
115
,
10323
(
2001
).
6.
P.
Norman
,
D. M.
Bishop
,
H. J. A.
Jensen
, and
J.
Oddershede
,
J. Chem. Phys.
123
,
194103
(
2005
).
7.
A.
Ruiz
,
J.
Breton
, and
J. M. G.
Llorente
,
J. Chem. Phys.
114
,
1272
1277
(
2001
).
8.
G. K.
Gueorguiev
,
J. M.
Pacheco
, and
D.
Tománek
,
Phys. Rev. Lett.
92
,
215501
(
2004
).
9.
A.
Ruzsinszky
,
J. P.
Perdew
,
J.
Tao
,
G. I.
Csonka
, and
J. M.
Pitarke
,
Phys. Rev. Lett.
109
,
233203
(
2012
).
10.
M.
Berninger
,
A.
Stefanov
,
S.
Deachapunya
, and
M.
Arndt
,
Phys. Rev. A
76
,
013607
(
2007
).
11.
I.
Compagnon
,
R.
Antoine
,
M.
Broyer
,
P.
Dugourd
,
J.
Lermé
, and
D.
Rayane
,
Phys. Rev. A
64
,
025201
(
2001
).
12.
A.
Mayer
,
Phys. Rev. B
75
,
045407
(
2007
).
13.
R.
Langlet
,
A.
Mayer
,
N.
Geuquet
,
H.
Amara
,
M.
Vandescuren
,
L.
Henrard
,
S.
Maksimenko
, and
P.
Lambin
, in
Proceedings of the Joint International Conference: Nanocarbon and Nanodiamond 2006
,
Diamond Relat. Mater.
16
,
2145
2149
(
2007
).
14.
H.-Y.
Kim
,
J. O.
Sofo
,
D.
Velegol
,
M. W.
Cole
, and
A. A.
Lucas
,
Langmuir
23
,
1735
1740
(
2007
).
15.
L. L.
Jensen
and
L.
Jensen
,
J. Phys. Chem. C
112
,
15697
15703
(
2008
).
16.
L. L.
Jensen
and
L.
Jensen
,
J. Phys. Chem. C
113
,
15182
15190
(
2009
).
17.
M. J.
Frisch
 et al, gaussian 03, Revision E.01.
Gaussian, Inc.
,
Wallingford, CT
,
2004
.
18.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
19.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
20.
DALTON, a molecular electronic structure program, Release Dalton2011, 2011, see http://daltonprogram.org/.
21.
A. J.
Sadlej
,
Collect. Czech. Chem. Commun.
53
,
1995
(
1988
).
22.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
,
Chem. Phys. Lett.
393
,
51
(
2004
).
23.
H. B. G.
Casimir
and
D.
Polder
,
Phys. Rev.
73
,
360
(
1948
).
24.
S.
Weber
, Mitsuho Yoshida’s Fullerene Library, http://www.jcrystal.com/steffenweber/gallery/Fullerenes/Fullerenes.html.
25.
V. V.
Gobre
and
A.
Tkatchenko
,
Nat. Commun.
4
,
2341
(
2013
).
26.
A.
Tkatchenko
and
M.
Scheffler
,
Phys. Rev. Lett.
102
,
073005
(
2009
).
27.
A.
Tkatchenko
,
R. A.
DiStasio
,
R.
Car
, and
M.
Scheffler
,
Phys. Rev. Lett.
108
,
236402
(
2012
).
28.
F. L.
Hirshfeld
,
Theor. Chim. Acta
44
,
129
138
(
1977
).
29.
W. A.
Al-Saidi
,
V. K.
Voora
, and
K. D.
Jordan
,
J. Chem. Theory. Comput.
8
,
1503
1513
(
2012
).
30.
D. C.
Sorescu
,
J.
Lee
,
W. A.
Al-Saidi
, and
K. D.
Jordan
,
J. Chem. Phys.
134
,
104707
(
2011
).
31.
D. C.
Sorescu
,
W. A.
Al-Saidi
, and
K. D.
Jordan
,
J. Chem. Phys.
135
,
124701
(
2011
).
32.
D. C.
Sorescu
,
J.
Lee
,
W. A.
Al-Saidi
, and
K. D.
Jordan
,
J. Chem. Phys.
137
,
074704
(
2012
).
33.
W. A.
Al-Saidi
,
H.
Feng
, and
K. A.
Fichthorn
,
Nano Lett.
12
,
997
1001
(
2012
).
34.
W. A.
Al-Saidi
,
H.
Feng
, and
K. A.
Fichthorn
,
J. Phys. Chem. C
117
,
1163
1171
(
2013
).
35.
Y.
Zhou
,
W. A.
Saidi
, and
K. A.
Fichthorn
,
J. Phys. Chem. C
117
,
11444
11448
(
2013
).
36.
D. A.
Egger
,
V. G.
Ruiz
,
W. A.
Saidi
,
T.
Bucko
,
A.
Tkatchenko
, and
E.
Zojer
,
J. Phys. Chem. C
117
,
3055
3061
(
2013
).
37.
Y. L.
Huang
,
E.
Wruss
,
D. A.
Egger
,
S.
Kera
,
N.
Ueno
,
W. A.
Saidi
,
T.
Bucko
,
A. T.
Wee
, and
E.
Zojer
,
Molecules
19
,
2969
2992
(
2014
).
38.
W. A.
Saidi
,
Cryst. Growth Des.
14
,
4920
4928
(
2014
).
39.
W. A.
Saidi
,
J. Chem. Phys.
141
,
094707
(
2014
).
You do not currently have access to this content.