This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

1.
G. Yu.
Golubiatnikov
,
S. P.
Belov
, and
A. V.
Lapinov
, Paper MF04 (2013) ;
S. P.
Belov
,
A. V.
Burenin
,
G. Yu.
Golubiatnikov
, and
A. V.
Lapinov
, Paper FB07 (2013); inInternational Symposium on Molecular Spectroscopy (The Ohio State University, 2013).
2.
J. E. M.
Heuvel
and
A.
Dymanus
,
J. Mol. Spectrosc.
45
,
282
(
1973
).
3.
J. E. M.
Heuvel
and
A.
Dymanus
,
J. Mol. Spectrosc.
47
,
363
(
1973
).
4.
L. H.
Coudert
,
C.
Gutlé
,
T. R.
Huet
,
J.-U.
Grabow
, and
S. A.
Levshakov
,
J. Chem. Phys.
143
,
044304
(
2015
).
5.
G. Yu.
Golubiatnikov
,
S. P.
Belov
,
I. I.
Leonov
,
A. F.
Andriyanov
,
I. I.
Zinchenko
,
A. V.
Lapinov
,
V. N.
Markov
,
A. P.
Shkaev
, and
A.
Guarnieri
,
Radiophys. Quantum Electron.
56
,
599
(
2014
) [IzvestiyaVuzov Radiofizika56, 666 (2013) (in Russian)].
6.

Note that certain commercial products are mentioned when specifying the experimental setups used in the present study. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that the products are necessarily the best available for the purpose.

7.
V. P.
Kochanov
,
S. P.
Belov
, and
G. Yu.
Golubiatnikov
,
J. Quant. Spectrosc. Radiat. Transfer
149
,
146
(
2014
).
8.
E. A.
Alekseev
,
V. V.
Ilyushin
, and
A. A.
Mescheryakov
,
Radio Phys. Radio Astron.
19
,
364
(
2014
) (in Russian).
9.
G.
Cazzoli
,
C.
Puzzarini
, and
A. V.
Lapinov
,
Astrophys. J., Lett.
592
,
L95
(
2003
).
10.
E. A.
Alekseev
,
R. A.
Motiyenko
, and
L.
Margulès
,
Radio Phys. Radio Astron.
3
,
75
(
2012
).
11.
A. V.
Lapinov
,
S. A.
Levshakov
,
M. G.
Kozlov
,
G. Yu.
Golubiatnikov
,
S. P.
Belov
,
A. F.
Andriyanov
,
A. P.
Shkaev
,
I. I.
Agafonova
, and
I. I.
Zinchenko
,
Vestnik RFFI.
#1
(
73
),
111
(
2012
) (in Russian).
12.
L.-H.
Xu
,
J.
Fisher
,
R. M.
Lees
,
H. Y.
Shi
,
J. T.
Hougen
,
J. C.
Pearson
,
B. J.
Drouin
,
G. A.
Blake
, and
R.
Braakman
,
J. Mol. Spectrosc.
251
,
305
(
2008
).
13.
C. H.
Townes
and
A. L.
Schawlow
,
Microwave Spectroscopy
(
McGraw-Hill
,
1955
).
14.
J. T.
Hougen
,
I.
Kleiner
, and
M.
Godefroid
,
J. Mol. Spectrosc.
163
,
559
(
1994
).
15.
M.
Tudorie
,
L. H.
Coudert
,
T. R.
Huet
,
D.
Jegouso
, and
G.
Sedes
,
J. Chem. Phys.
134
,
074314
(
2011
).
16.
L. H.
Coudert
and
J. C.
López
,
J. Mol. Spectrosc.
239
,
135
(
2006
).
17.
See supplementary material at http://dx.doi.org/10.1063/1.4954941 for more details on the calculations in this paper.
18.
L.-H.
Xu
and
F. J.
Lovas
,
J. Phys. Chem. Ref. Data
26
,
17
(
1997
).
19.
B. N.
Taylor
and
C. E.
Kuyatt
, Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, 1994, http://physics.nist.gov/TN1297.

Supplementary Material

You do not currently have access to this content.