Due to the importance of both static and dynamical correlation in the bond formation, low-dimensional beryllium systems constitute interesting case studies to test correlation methods. Aiming to describe the whole dissociation curve of extended Be systems we chose to apply the method of increments (MoI) in its multireference (MR) formalism. To gain insight into the main characteristics of the wave function, we started by focusing on the description of small Be chains using standard quantum chemical methods. In a next step we applied the MoI to larger beryllium systems, starting from the Be6 ring. The complete active space formalism was employed and the results were used as reference for local MR calculations of the whole dissociation curve. Although this is a well-established approach for systems with limited multireference character, its application regarding the description of whole dissociation curves requires further testing. Subsequent to the discussion of the role of the basis set, the method was finally applied to larger rings and extrapolated to an infinite chain.

1.
R.
Dreizler
and
E.
Gross
,
Density Functional Theory
(
Springer-Verlag
,
Berlin
,
1990
).
2.
H.
Eschrig
,
The Fundamentals of Density Functional Theory
(
B. C. Teubner Verlag
,
Stuttgart
,
1996
).
3.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
4.
P.
Pulay
,
Chem. Phys. Lett.
100
,
151
(
1983
).
5.
P.
Pulay
and
S.
Saebø
,
Theor. Chim. Acta
69
,
357
(
1986
).
6.
S.
Saebo
and
P.
Pulay
,
Annu. Rev. Phys. Chem.
44
,
213
(
1993
).
7.
G.
Stollhoff
and
A.
Heilingbrunner
,
Z. Phys. B: Condens. Matter
83
,
85
(
1991
).
8.
R.
Pardon
,
J.
Gräfenstein
, and
G.
Stollhoff
,
Phys. Rev. B
51
,
10556
(
1995
).
9.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
,
Chem. Phys. Lett.
313
,
701
(
1999
).
10.
M.
Schütz
,
J. Chem. Phys.
113
,
9986
(
2000
).
11.
M.
Schütz
and
H. J.
Werner
,
J. Chem. Phys.
114
,
661
(
2001
).
12.
M.
Schütz
,
Phys. Chem. Chem. Phys.
4
,
3941
(
2002
).
13.
M.
Schütz
,
J. Chem. Phys.
116
,
8772
(
2002
).
14.
C.
Pisani
,
L.
Maschio
,
S.
Casassa
,
M.
Halo
,
M.
Schütz
, and
D.
Usvyat
,
J. Comput. Chem.
29
,
2113
(
2008
).
15.
C.
Pisani
,
M.
Schütz
,
S.
Casassa
,
D.
Usvyat
,
L.
Maschio
,
M.
Lorenz
, and
A.
Erba
,
Phys. Chem. Chem. Phys.
14
,
7615
(
2012
).
16.
G. K.-L.
Chan
and
D.
Zgid
,
Annu. Rep. Comput. Chem.
5
,
149
(
2009
).
17.
K. H.
Marti
and
M.
Reiher
,
Z. Phys. Chem.
224
,
583
(
2010
).
18.
U.
Schollwöck
,
Ann. Phys.
326
,
96
(
2011
); e-print arXiv:1008.3477.
19.
S.
Wouters
and
D.
Van Neck
,
Eur. Phys. J. D
68
,
272
(
2014
).
20.
V.
Murg
,
F.
Verstraete
,
R.
Schneider
,
P. R.
Nagy
, and
Ö.
Legeza
,
J. Chem. Theory Comput.
11
,
1027
(
2015
).
21.
S.
Szalay
,
M.
Pfeffer
,
V.
Murg
,
G.
Barcza
,
F.
Verstraete
,
R.
Schneider
, and
Ö.
Legeza
,
Int. J. Quantum Chem.
115
,
1342
(
2015
).
22.
G. E.
Scuseria
,
T. M.
Henderson
, and
D. C.
Sorensen
,
J. Chem. Phys.
129
,
231101
(
2008
).
23.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
24.
J. S.
Spencer
,
N. S.
Blunt
, and
W. M.
Foulkes
,
J. Chem. Phys.
136
,
054110
(
2012
).
25.
M. A.
Morales
,
J.
McMinis
,
B. K.
Clark
,
J.
Kim
, and
G. E.
Scuseria
,
J. Chem. Theory Comput.
8
,
2181
(
2012
).
26.
D.
Cleland
,
G. H.
Booth
,
C.
Overy
, and
A.
Alavi
,
J. Chem. Theory Comput.
8
,
4138
(
2012
).
27.
J. J.
Shepherd
,
G.
Booth
,
A.
Grüneis
, and
A.
Alavi
,
Phys. Rev. B
85
,
081103
(
2012
).
28.
M.
Kolodrubetz
and
B. K.
Clark
,
Phys. Rev. B
86
,
075109
(
2012
).
29.
F. R.
Petruzielo
,
A. A.
Holmes
,
H. J.
Changlani
,
M. P.
Nightingale
, and
C. J.
Umrigar
,
Phys. Rev. Lett.
109
,
230201
(
2012
).
30.
A.
Roggero
,
A.
Mukherjee
, and
F.
Pederiva
,
Phys. Rev. B
88
,
115138
(
2013
).
31.
S. Y.
Willow
and
S.
Hirata
,
J. Chem. Phys.
140
,
024111
(
2014
).
32.
M.
Schütz
,
O.
Masur
, and
D.
Usvyat
,
J. Chem. Phys.
140
,
244107
(
2014
).
33.
M.
Schwilk
,
D.
Usvyat
, and
H. J.
Werner
,
J. Chem. Phys.
142
,
121102
(
2015
).
34.
H.
Stoll
,
Chem. Phys. Lett.
191
,
548
(
1992
).
35.
H.
Stoll
,
Phys. Rev. B
46
,
6700
(
1992
).
36.
H.
Stoll
,
B.
Paulus
, and
P.
Fulde
,
Chem. Phys. Lett.
469
,
90
(
2009
).
37.
H.
Stoll
,
Mol. Phys.
108
,
243
(
2010
).
38.
B.
Paulus
,
Chem. Phys. Lett.
371
,
7
(
2003
).
39.
B.
Paulus
,
Phys. Rep.
428
,
1
(
2006
).
40.
E.
Voloshina
and
B.
Paulus
,
Phys. Rev. B: Condens. Matter Mater. Phys.
75
,
245117
(
2007
).
41.
I.
Schmitt
,
K.
Fink
, and
V.
Staemmler
,
Phys. Chem. Chem. Phys.
11
,
11196
(
2009
).
42.
C.
Müller
,
D.
Usvyat
, and
H.
Stoll
,
Phys. Rev. B: Condens. Matter Mater. Phys.
83
,
245136
(
2011
).
43.
E.
Voloshina
,
Phys. Rev. B: Condens. Matter Mater. Phys.
85
,
045444
(
2012
).
44.
B.
Paulus
,
K.
Rosciszewski
,
P.
Fulde
, and
H.
Stoll
,
Phys. Rev. B
68
,
235115
(
2003
).
45.
W.
Alsheimer
and
B.
Paulus
,
Eur. Phys. J. B
40
,
243
(
2004
).
46.
E.
Voloshina
and
B.
Paulus
,
J. Chem. Theory Comput.
10
,
1698
(
2014
).
47.
E.
Fertitta
,
B.
Paulus
,
G.
Barcza
, and
Ö.
Legeza
,
J. Chem. Phys.
143
,
114108
(
2015
).
48.
S. R.
White
,
Phys. Rev. Lett.
69
,
2863
(
1992
).
49.
S. R.
White
,
Phys. Rev. B
48
,
10345
(
1993
).
50.
R.
Olivares-Amaya
,
W.
Hu
,
N.
Nakatani
,
S.
Sharma
,
J.
Yang
, and
G. K.-L.
Chan
,
J. Chem. Phys.
142
,
034102
(
2015
).
51.
H. J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
W.
Györffy
,
D.
Kats
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
F.
Eckert
,
E.
Goll
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
T.
Hrenar
,
G.
Jansen
,
C.
Köppl
,
Y.
Liu
,
A. W.
Lloyd
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
M. E.
Mura
,
A.
Nicklass
,
D. P.
O’Neill
,
P.
Palmieri
,
D.
Peng
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
, and
M.
Wang
, molpro, version 2015.1, a package of ab initio programs, 2015, see http://www.molpro.net.
52.
S. F.
Boys
,
Rev. Mod. Phys.
32
,
296
(
1960
).
53.
B. P.
Prascher
,
D. E.
Woon
,
K. A.
Peterson
,
T. H.
Dunning
, and
A. K.
Wilson
,
Theor. Chem. Acc.
128
,
69
(
2011
).
54.
J. M.
Merritt
,
V. E.
Bondybey
, and
M. C.
Heaven
,
Science
324
,
1548
(
2009
).
55.
K.
Patkowski
,
R.
Podeszwa
, and
K.
Szalewicz
,
J. Phys. Chem. A
111
,
12822
(
2007
).
56.
J.
Koput
,
Phys. Chem. Chem. Phys.
13
,
20311
(
2011
).
57.
X. W.
Sheng
,
X. Y.
Kuang
,
P.
Li
, and
K. T.
Tang
,
Phys. Rev. A: At., Mol., Opt. Phys.
88
,
022517
(
2013
).
58.
M.
El Khatib
,
G. L.
Bendazzoli
,
S.
Evangelisti
,
W.
Helal
,
T.
Leininger
,
L.
Tenti
, and
C.
Angeli
,
J. Phys. Chem. A
118
,
6664
(
2014
).
59.
M. C.
Heaven
,
J. M.
Merritt
, and
V. E.
Bondybey
,
Annu. Rev. Phys. Chem.
62
,
375
(
2011
).
60.
W.
Helal
,
S.
Evangelisti
,
T.
Leininger
, and
A.
Monari
,
Chem. Phys. Lett.
568-569
,
49
(
2013
).
61.
See supplementary material at http://dx.doi.org/10.1063/1.4955317 for a more detailed discussion of small Be chains and rings, basis set limit and infinite chain extrapolations as well as the individual increments of the larger rings.
62.
E.
Fertitta
,
B.
Paulus
,
G.
Barcza
, and
Ö.
Legeza
,
Phys. Rev. B
90
,
245129
(
2014
).
63.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
64.
W.
Klopper
and
T.
Helgaker
,
Theor. Chem. Acc.
99
,
265
(
1998
).

Supplementary Material

You do not currently have access to this content.