We demonstrate that using a pressure corrected three-dimensional reference interaction site model one can accurately predict salting-out (Setschenow’s) constants for a wide range of organic compounds in aqueous solutions of NaCl. The approach, based on classical molecular force fields, offers an alternative to more heavily parametrized methods.

1.
K. J.
Tielrooij
,
N.
Garcia-Araez
,
M.
Bonn
, and
H. J.
Bakker
, “
Cooperativity in ion hydration
,”
Science
328
,
1006
1009
(
2010
).
2.
Y.
Marcus
, “
Effect of ions on the structure of water: Structure making and breaking
,”
Chem. Rev.
109
,
1346
1370
(
2009
).
3.
D. R.
Robinson
and
W. P.
Jencks
, “
The effect of concentrated salt solutions on the activity coefficient of acetyltetraglycine ethyl ester
,”
J. Am. Chem. Soc.
87
,
2470
2479
(
1965
).
4.
W. F.
McDevit
and
F. A.
Long
, “
The activity coefficient of benzene in aqueous salt solutions
,”
J. Am. Chem. Soc.
74
,
1773
1777
(
1952
).
5.
M. G.
Cacace
,
E. M.
Landau
, and
J. J.
Ramsden
, “
The Hofmeister series: Salt and solvent effects on interfacial phenomena
,”
Q. Rev. Biophys.
30
,
241
277
(
1997
).
6.
J. W.
Readman
,
R. F. C.
Mantoura
, and
M. M.
Rhead
, “
The physico-chemical speciation of polycyclic aromatic hydrocarbons (PAH) in aquatic systems
,”
Z. Anal. Chem.
319
,
126
(
1984
).
7.
W.
Mabey
and
T.
Mill
, “
Critical review of hydrolysis of organic compounds in water under environmental conditions
,”
J. Phys. Chem. Ref. Data
7
,
383
415
(
1978
).
8.
R. A.
Park
,
J. S.
Clough
, and
M. C.
Wellman
, “
AQUATOX: Modeling environmental fate and ecological effects in aquatic ecosystems
,”
Ecol. Modell.
213
,
1
15
(
2008
).
9.
B. A.
Holmberg
,
H.
Wang
,
J. M.
Norbeck
, and
Y.
Yan
, “
Controlling size and yield of zeolite y nanocrystals using tetramethylammonium bromide
,”
Microporous Mesoporous Mater.
59
,
13
28
(
2003
).
10.
S.
Sasaki
,
S.
Koga
,
R.
Imabayashi
, and
H.
Maeda
, “
Salt effects on the volume phase transition of ionic gel induced by the hydrophobic counterion biding
,”
J. Phys. Chem. B
105
,
5852
5855
(
2001
).
11.
W.
Melander
and
C.
Horváth
, “
Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: An interpretation of the lyotropic series
,”
Arch. Biochem. Biophys.
183
,
200
215
(
1977
).
12.
Y. J.
Zhang
and
P. S.
Cremer
, “
Chemistry of Hofmeister anions and osmolytes
,”
Annu. Rev. Phys. Chem.
61
,
63
83
(
2010
).
13.
L.
Li
,
C. J.
Fennell
, and
K. A.
Dill
, “
Small molecule solvation changes due to the presence of salt are governed by the cost of solvent cavity formation and dispersion
,”
J. Chem. Phys.
141
,
22D518
(
2014
).
14.
S.
Endo
,
A.
Pfennigsdorff
, and
K.-U.
Goss
, “
Salting-out effect in aqueous NaCl solutions: Trends with size and polarity of solute molecules
,”
Environ. Sci. Technol.
46
,
1496
1503
(
2012
).
15.
V.
Sergiievskyi
,
G.
Jeanmairet
,
M.
Levesque
, and
D.
Borgis
, “
Solvation free-energy pressure corrections in the three dimensional reference interaction site model
,”
J. Chem. Phys.
143
,
184116
(
2015
).
16.
M.
Misin
,
D. S.
Palmer
, and
M. V.
Fedorov
, “
Predicting solvation free energies using parameter-free solvent models
,”
J. Phys. Chem. B
120
,
5724
(
2016
).
17.
M.
Misin
,
M. V.
Fedorov
, and
D. S.
Palmer
, “
Hydration free energies of molecular ions from theory and simulation
,”
J. Phys. Chem. B
120
,
975
983
(
2016
).
18.
A.
Ben-Naim
,
Molecular Theory of Solutions
(
OUP
,
Oxford
,
2006
).
19.
Y.
Marcus
, “
Individual ionic surface tension increments in aqueous solutions
,”
Langmuir
29
,
2881
2888
(
2013
).
20.
M. A.
Schlautman
,
S.
Yim
,
E. R.
Carraway
,
J. H.
Lee
, and
B. E.
Herbert
, “
Testing a surface tension-based model to predict the salting out of polycyclic aromatic hydrocarbons in model environmental solutions
,”
Water Res.
38
,
3331
3339
(
2004
).
21.
W.
Li
and
Y.
Mu
, “
Hydration patterns and salting effects in sodium chloride solution
,”
J. Chem. Phys.
135
,
134502
(
2011
).
22.
D.
Beglov
and
B.
Roux
, “
An integral equation to describe the solvation of polar molecules in liquid water
,”
J. Phys. Chem.
101
,
7821
7826
(
1997
).
23.
E. L.
Ratkova
,
D. S.
Palmer
, and
M. V.
Fedorov
, “
Solvation thermodynamics of organic molecules by the molecular integral equation theory: Approaching chemical accuracy
,”
Chem. Rev.
115
,
6312
6356
(
2015
).
24.
F.
Hirata
,
Molecular Theory of Solvation
(
Kluwer Academic Publishers
,
New York
,
2003
).
25.
G. N.
Chuev
,
S.
Chiodo
,
S. E.
Erofeeva
,
M. V.
Fedorov
,
N.
Russo
, and
E.
Sicilia
, “
A quasilinear RISM approach for the computation of solvation free energy of ionic species
,”
Chem. Phys. Lett.
418
,
485
489
(
2006
).
26.
M.
Misin
,
M. V.
Fedorov
, and
D. S.
Palmer
, “
Communication: Accurate hydration free energies at a wide range of temperatures from 3D-RISM
,”
J. Chem. Phys.
142
,
091105
(
2015
).
27.
B.
Li
,
A. V.
Matveev
, and
N.
Rösch
, “
Three-dimensional reference interaction site model solvent combined with a quantum mechanical treatment of the solute
,”
Comput. Theor. Chem.
1070
,
143
151
(
2015
).
28.
J.
Johnson
,
D. A.
Case
,
T.
Yamazaki
,
S.
Gusarov
,
A.
Kovalenko
, and
T.
Luchko
, “
Small molecule hydration energy and entropy from 3D-RISM
,”
J. Phys.: Condens. Matter
28
,
344002
(
2016
).
29.
T.
Sumi
,
A.
Mitsutake
, and
Y.
Maruyama
, “
A solvation-free-energy functional: A reference-modified density functional formulation
,”
J. Comput. Chem.
36
,
1359
1369
(
2015
).
30.
G.
Jeanmairet
,
M.
Levesque
,
V.
Sergiievskyi
, and
D.
Borgis
, “
Molecular density functional theory for water with liquid-gas coexistence and correct pressure
,”
J. Chem. Phys.
142
,
154112
(
2015
).
31.
Y.
Ebato
and
T.
Miyata
, “
A pressure consistent bridge correction of kovalenko-hirata closure in ornstein-zernike theory for lennard-jones fluids by apparently adjusting sigma parameter
,”
AIP Adv.
6
,
055111
(
2016
).
32.
F.
Mrugalla
and
S. M.
Kast
, “
Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory
,”
J. Phys.: Condens. Matter
28
,
344004
(
2016
).
33.
T.
Hayashi
,
H.
Oshima
,
Y.
Harano
, and
M.
Kinoshita
, “
Water based on a molecular model behaves like a hard-sphere solvent for a nonpolar solute when the reference interaction site model and related theories are employed
,”
J. Phys.: Condens. Matter
28
,
344003
(
2016
).
34.
M.
Kinoshita
and
F.
Hirata
, “
Analysis of salt effects on solubility of noble gases in water using the reference interaction site model theory
,”
J. Chem. Phys.
106
,
5202
5215
(
1997
).
35.
T.
Imai
,
M.
Kinoshita
, and
F.
Hirata
, “
Salt effect on stability and solvation structure of peptide: An integral equation study
,”
Bull. Chem. Soc. Jpn.
73
,
1113
1122
(
2000
).
36.
R.
Ishizuka
,
G. A.
Huber
, and
J. A.
McCammon
, “
Solvation effect on the conformations of alanine dipeptide: Integral equation approach
,”
J. Phys. Chem. Lett.
1
,
2279
2283
(
2010
).
37.
Y.
Maruyama
,
N.
Yoshida
, and
F.
Hirata
, “
Electrolytes in biomolecular systems studied with the 3D-RISM/RISM theory
,”
Interdiscip. Sci.: Comput. Life Sci.
3
,
290
307
(
2011
).
38.
F.
Moučka
,
I.
Nezbeda
, and
W. R.
Smith
, “
Molecular force fields for aqueous electrolytes: SPC/E-compatible charged LJ sphere models and their limitations
,”
J. Chem. Phys.
138
,
154102
(
2013
).
39.
B.
Hess
,
C.
Holm
, and
N. v. d.
Vegt
, “
Osmotic coefficients of atomistic NaCl (aq) force fields
,”
J. Chem. Phys.
124
,
164509
(
2006
).
40.
M.
Patra
and
M.
Karttunen
, “
Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions: Diffusion, free energy of hydration, and structural properties
,”
J. Comput. Chem.
25
,
678
689
(
2004
).
41.
A.
Asmadi
,
T.
Kirchner
,
W.
Abdallah
,
M. V.
Fedorov
, and
M. R.
Stukan
, “
Influence of the drude charge value on the performance of polarisable water model: A test for microscopic and macroscopic parameters
,”
J. Mol. Liq.
188
,
245
251
(
2013
).
42.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
, “
The missing term in effective pair potentials
,”
J. Phys. Chem.
91
,
6269
6271
(
1987
).
43.
Computer Simulation of Liquids
, edited by
M. P.
Allen
and
D. J.
Tildesley
(
Clarendon Press
,
Oxford, UK
,
1987
).
44.
L. X.
Dang
, “
Mechanism and thermodynamics of ion selectivity in aqueous solutions of 18-crown-6 ether: A molecular dynamics study
,”
J. Am. Chem. Soc.
117
,
6954
6960
(
1995
).
45.
I. S.
Joung
and
T. E.
Cheatham
, “
Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
,”
J. Phys. Chem. B
112
,
9020
9041
(
2008
).
46.
S.
Deublein
,
J.
Vrabec
, and
H.
Hasse
, “
A set of molecular models for alkali and halide ions in aqueous solution
,”
J. Chem. Phys.
136
,
084501
(
2012
).
47.
D.
Horinek
,
S. I.
Mamatkulov
, and
R. R.
Netz
, “
Rational design of ion force fields based on thermodynamic solvation properties
,”
J. Chem. Phys.
130
,
124507
(
2009
).
48.
N. M.
O’Boyle
,
M.
Banck
,
C. A.
James
,
C.
Morley
,
T.
Vandermeersch
, and
G. R.
Hutchison
, “
Open babel: An open chemical toolbox
,”
J. Cheminf.
3
,
33
(
2011
).
49.
N. M.
O’Boyle
,
C.
Morley
, and
G. R.
Hutchison
, “
Pybel: A python wrapper for the OpenBabel cheminformatics toolkit
,”
Chem. Cent. J.
2
,
1
5
(
2008
).
50.
Y.
Zhao
and
D. G.
Truhlar
, “
The m06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four m06-class functionals and 12 other functionals
,”
Theor. Chem. Acc.
120
,
215
241
(
2007
).
51.
B. J.
Lynch
,
Y.
Zhao
, and
D. G.
Truhlar
, “
Effectiveness of diffuse basis functions for calculating relative energies by density functional theory
,”
J. Phys. Chem. A
107
,
1384
1388
(
2003
).
52.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT, 2009.
53.
A. V.
Marenich
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions
,”
J. Phys. Chem. B
113
,
6378
6396
(
2009
).
54.
J. L.
Banks
,
H. S.
Beard
,
Y.
Cao
,
A. E.
Cho
,
W.
Damm
,
R.
Farid
,
A. K.
Felts
,
T. A.
Halgren
,
D. T.
Mainz
,
J. R.
Maple
,
R.
Murphy
,
D. M.
Philipp
,
M. P.
Repasky
,
L. Y.
Zhang
,
B. J.
Berne
,
R. A.
Friesner
,
E.
Gallicchio
, and
R. M.
Levy
, “
Integrated modeling program, applied chemical theory (IMPACT)
,”
J. Comput. Chem.
26
,
1752
1780
(
2005
).
55.
Maestro
(
Schrödinger, LLC
,
New York
,
2014
).
56.
A. V.
Marenich
,
S. V.
Jerome
,
C. J.
Cramer
, and
D. G.
Truhlar
, “
Charge model 5: An extension of hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases
,”
J. Chem. Theory Comput.
8
,
527
541
(
2012
).
57.
A.
Marenich
,
C.
Cramer
, and
D.
Truhlar
,
CM5PAC
(
University of Minnesota
,
Minneapolis, MN
,
2013
).
58.
J.
Perkyns
and
B. M.
Pettitt
, “
A site–site theory for finite concentration saline solutions
,”
J. Chem. Phys.
97
,
7656
7666
(
1992
).
59.
P.
Novotny
and
O.
Sohnel
, “
Densities of binary aqueous solutions of 306 inorganic substances
,”
J. Chem. Eng. Data
33
,
49
55
(
1988
).
60.
S. M.
Kast
and
T.
Kloss
, “
Closed-form expressions of the chemical potential for integral equation closures with certain bridge functions
,”
J. Chem. Phys.
129
,
236101
(
2008
).
61.
T.
Luchko
,
S.
Gusarov
,
D. R.
Roe
,
C.
Simmerling
,
D. A.
Case
,
J.
Tuszynski
, and
A.
Kovalenko
, “
Three-dmensional molecular theory of solvation coupled with molecular dynamics in amber
,”
J. Chem. Theory Comput.
6
,
607
624
(
2010
).
62.
A.
Kovalenko
and
F.
Hirata
, “
Potentials of mean force of simple ions in ambient aqueous solution. I. Three-dimensional reference interaction site model approach
,”
J. Chem. Phys
112
,
10391
10402
(
2000
).
63.
A.
Kovalenko
and
F.
Hirata
, “
Self-consistent description of a metal-water interface by the kohn-sham density functional theory and the three-dimensional reference interaction site model
,”
J. Chem. Phys.
110
,
10095
10112
(
1999
).
64.
M.
Lund
,
L.
Vrbka
, and
P.
Jungwirth
, “
Specific ion binding to nonpolar surface patches of proteins
,”
J. Am. Chem. Soc.
130
,
11582
11583
(
2008
).
65.
P. E.
Smith
, “
Computer simulation of cosolvent effects on hydrophobic hydration
,”
J. Phys. Chem. B
103
,
525
534
(
1999
).
66.
P.
Jungwirth
and
D. J.
Tobias
, “
Surface effects on aqueous ionic solvation: A molecular dynamics simulation study of NaCl at the air/water interface from infinite dilution to saturation
,”
J. Phys. Chem. B
104
,
7702
7706
(
2000
).
67.
P. B.
Petersen
and
R. J.
Saykally
, “
On the nature of ions at the liquid water surface
,”
Annu. Rev. Phys. Chem.
57
,
333
364
(
2006
).
68.
M. V.
Fedorov
and
A. A.
Kornyshev
, “
Unravelling the solvent response to neutral and charged solutes
,”
Mol. Phys.
105
,
1
16
(
2007
).
69.
Y.
Levin
, “
Electrostatic correlations: From plasma to biology
,”
Rep. Prog. Phys.
65
,
1577
(
2002
).
70.
M. V.
Fedorov
and
A. A.
Kornyshev
, “
Ionic liquids at electrified interfaces
,”
Chem. Rev.
114
,
2978
3036
(
2014
).
71.
A.
Klamt
,
COSMO-RS: From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design
(
Elsevier Science
,
Amsterdam
,
2005
).
72.
N.
Ni
and
S. H.
Yalkowsky
, “
Prediction of Setschenow constants
,”
Int. J. Pharm.
254
,
167
172
(
2003
).
73.
Y.
Li
,
Q.
Hu
, and
C.
Zhong
, “
Topological modeling of the Setschenow constant
,”
Ind. Eng. Chem. Res.
43
,
4465
4468
(
2004
).
74.
J.
Xu
,
L.
Wang
,
L.
Wang
,
X.
Shen
, and
W.
Xu
, “
QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses
,”
J. Comput. Chem.
32
,
3241
3252
(
2011
).
75.
X.
Yu
and
R.
Yu
, “
Setschenow constant prediction based on the IEF-PCM calculations
,”
Ind. Eng. Chem. Res.
52
,
11182
11188
(
2013
).
76.
F.
Archambault
,
C.
Chipot
,
I.
Soteras
,
F. J.
Luque
,
K.
Schulten
, and
F.
Dehez
, “
Polarizable intermolecular potentials for water and benzene interacting with halide and metal ions
,”
J. Chem. Theory Comput.
5
,
3022
3031
(
2009
).
77.
W.
Kunz
 et al, “
Osmotic coefficients and surface tensions of aqueous electrolyte solutions: Role of dispersion forces
,”
J. Phys. Chem. B
108
,
2398
2404
(
2004
).

Supplementary Material

You do not currently have access to this content.