A droplet formation in aqueous solutions of tetrahydrofuran (THF) has been experimentally detected at the submicrometer scale using two independent laser diagnostic techniques (dynamic light scattering and laser phase microscopy) and described in terms of THF-water intermolecular hydrogen bonding. It is shown that the nanodroplets have a mean size of 300 nm, their refractive index is higher than that of the ambient liquid, and they are highly enriched with THF molecules. The maximum of light scattering intensity falls within the THF concentration range 2–8 mol. %, which corresponds to the volume number density of the nanodroplets ∼1010–1011 cm−3. A theoretical explanation of forming the nanodroplets with a high content of THF, which is based on a model of dichotomous noise being applied to the so-termed “twinkling” hydrogen bonds and involves spinodal decomposition in the unstable region enclosed within the dichotomous binodal, is proposed. The parameters of hydrogen bonds in the molecular system “water—THF” were found, and the phase diagram of the solution with allowance for cross-linking hydrogen bonds was constructed.

1.
K.
Iwasaki
and
T.
Fujiyama
,
J. Phys. Chem.
81
,
1908
(
1977
).
2.
K.
Iwasaki
and
T.
Fujiyama
,
J. Phys. Chem.
83
,
463
(
1979
).
3.
N.
Ito
,
T.
Kato
, and
T.
Fujiyama
,
Bull. Chem. Soc. Jpn.
54
,
2573
(
1981
).
4.
S.
Samal
and
K.
Geckeler
,
Chem. Commun.
21
,
2224
(
2001
).
5.
S. Y.
Lo
,
X.
Geng
, and
D.
Gann
,
Phys. Lett. A
373
,
3872
(
2009
).
6.
A. I.
Rusanov
and
A. G.
Nekrasov
,
Langmuir
26
,
13767
(
2010
).
7.
I. S.
Ryzhkina
,
L. I.
Murtazina
,
A. V.
Nemtarev
,
V. F.
Mironov
,
E. A.
Kataev
, and
A. I.
Konovalov
,
Chem. Phys. Lett.
511
,
247
(
2011
).
8.
A. I.
Konovalov
and
I. S.
Ryzhkina
,
Geochem. Int.
52
,
1207
(
2014
).
9.
Y.
Georgalis
,
A. M.
Kierzek
, and
W.
Saenger
,
J. Phys. Chem. B
104
,
3405
(
2000
).
10.
R.
Roy
,
W. A.
Tiller
,
I.
Bell
, and
M. R.
Hoover
,
Mater. Res. Innovations
9
,
98
(
2005
).
11.
M. V.
Avdeev
,
A. A.
Khokhryakov
,
T. V.
Tropin
,
G. V.
Andrievsky
,
V. K.
Klochkov
 et al,
Langmuir
20
,
4363
(
2004
).
12.
D.
Subramanian
and
M. A.
Anisimov
,
J. Phys. Chem. B
115
,
9179
(
2011
).
13.
D.
Subramanian
,
D. A.
Ivanov
,
I. K.
Yudin
,
M. A.
Anisimov
, and
J. V.
Sengers
,
J. Chem. Eng. Data
56
,
1238
(
2011
).
14.
D.
Subramanian
,
J. B.
Klauda
,
P. J.
Collings
, and
M. A.
Anisimov
,
J. Phys. Chem. B
118
,
5994
(
2014
).
15.
P.
Bharmoria
,
H.
Gupta
,
V. P.
Mohandas
,
P. K.
Ghosh
, and
A.
Kumar
,
J. Phys. Chem. B
116
,
11712
(
2012
).
16.
D.
Hagmeyer
,
J.
Ruesing
,
T.
Fenske
,
H. W.
Klein
,
C.
Schmuck
 et al,
RSC Adv.
2
,
4690
(
2012
).
17.
M.
Sedlák
,
J. Phys. Chem. B
110
,
4329
(
2006
).
18.
M.
Sedlák
,
J. Phys. Chem. B
110
,
4339
(
2006
).
19.
M.
Sedlák
,
J. Phys. Chem. B
110
,
13976
(
2006
).
20.
M.
Sedlák
and
D.
Rak
,
J. Phys. Chem. B
117
,
2495
(
2013
).
21.
A.
Habich
,
W.
Ducker
,
D. E.
Dunstan
, and
X.
Zhang
,
J. Phys. Chem. B
114
,
6962
(
2010
).
22.
F.
Jin
,
J.
Ye
,
L.
Hong
,
H.
Lam
, and
C.
Wu
,
J. Phys. Chem. B
111
,
2255
(
2007
).
23.
N. F.
Bunkin
,
N. V.
Suyazov
,
A. V.
Shkirin
,
P. S.
Ignatiev
, and
K. V.
Indukaev
,
J. Chem. Phys.
130
,
134308
(
2009
).
24.
N. F.
Bunkin
,
A. V.
Shkirin
,
P. S.
Ignatiev
,
L. L.
Chaikov
,
I. S.
Burkhanov
, and
A. V.
Starosvetskij
,
J. Chem. Phys.
137
,
054706
(
2012
).
25.
N. F.
Bunkin
,
A. V.
Shkirin
,
N. V.
Suyazov
,
V. A.
Babenko
,
A. A.
Sychev
,
N. V.
Penkov
,
K. N.
Belosludtsev
, and
S. V.
Gudkov
,
J. Phys. Chem. B
120
,
1291
(
2016
).
26.
S. O.
Yurchenko
,
A. V.
Shkirin
,
B. W.
Ninham
,
A. A.
Sychev
,
V. A.
Babenko
,
N. V.
Penkov
,
N. P.
Kryuchkov
, and
N. F.
Bunkin
,
Langmuir
32
,
11245
(
2016
).
27.
N. F.
Bunkin
and
A. V.
Shkirin
,
J. Chem. Phys.
137
,
054707
(
2012
).
28.
M. N.
Rodnikova
,
Yu. A.
Zakharova
,
D. B.
Kayumova
, and
I. A.
Solonina
,
Russ. J. Phys. Chem. A
84
,
518
(
2010
).
29.
R. G.
Ross
and
P.
Andersson
,
Can. J. Chem.
60
,
881
(
1982
).
30.
M. J.
Shultz
and
T. H.
Vu
,
J. Phys. Chem. B
119
,
9167
(
2015
).
31.
Z.
Li
,
H.
Cheng
,
J.
Li
,
J.
Hao
,
L.
Zhang
,
B.
Hammouda
, and
C. C.
Han
,
J. Phys. Chem. B
115
,
7887
(
2011
).
32.
B. J.
Berne
and
R.
Pecora
,
Dynamic Light Scattering
(
R.E. Krieger Publishing Co.
,
Malabar
,
1990
).
33.
B.
Chu
,
Laser Light Scattering
(
Academic Press
,
New York
,
1974
).
34.
L. D.
Landau
and
E. M.
Lifshitz
,
Course of Theoretical Physics, Vol. 6: Hydrodynamics
(
England Pergamon Press
,
Oxford, UK
,
1980
).
35.
M. T.
García
,
I.
Gracia
,
G.
Duque
,
A.
de Lucas
, and
J. F.
Rodríguez
,
Waste Manage.
29
,
1814
(
2009
).
36.
M.
Daimon
and
A.
Masumura
,
Appl. Opt.
46
,
3811
(
2007
).
37.
D.
Eizenberg
and
W.
Kauzmann
,
The Structure and Properties of Water
(
Oxford Univ.
,
Oxford
,
1969
).
38.
R. F.
Pawula
,
Int. J. Control
25
,
283
(
1977
).
39.
K.
Kitahara
,
W.
Horsthemke
, and
R.
Lefever
,
Phys. Lett. A
70
,
377
(
1979
).
40.
K.
Kitahara
,
W.
Horsthemke
,
R.
Lefever
, and
Y.
Inaba
,
Prog. Theor. Phys.
64
,
1233
(
1980
).
41.
W.
Horsthemke
and
R.
Lefever
,
Noise-Induced Transitions
(
Springer-Verlag
,
Berlin
,
1984
).
42.
G. A.
Lyakhov
,
JETP Lett.
60
,
99
(
1994
).
43.
G. A.
Lyakhov
and
I. G.
Lyakhov
,
Phys. Vib.
8
,
148
(
2000
).
44.
A. A.
Sobyanin
,
Sov. Phys.-Usp.
29
,
570
(
1986
).
45.
I. L.
Fabelinskii
,
S. V.
Krivokhizha
, and
L. L.
Chaikov
,
Sov. Phys.-Usp.
29
,
572
(
1986
).
46.
L. D.
Landau
and
E. M.
Lifshitz
,
Course of Theoretical Physics, Vol. 5: Statistical Physics
(
Pergamon Press
,
Oxford
,
1980
).
47.
L. P.
Pitaevskii
and
E. M.
Lifshitz
,
Course of Theoretical Physics, Vol. 10: Physical Kinetics
(
Pergamon Press
,
Oxford
,
1981
).
48.
50.
V. P.
Skripov
and
A. V.
Skripov
,
Sov. Phys.-Usp.
22
,
389
(
1979
).
51.
S.
Manley
,
H. M.
Wyss
,
K.
Miyazaki
,
J. C.
Conrad
,
V.
Trappe
 et al,
Phys. Rev. Lett.
95
,
238302
(
2005
).
52.
N. F.
Bunkin
,
A. V.
Lobeev
, and
G. A.
Lyakhov
,
Phys.-Usp.
40
,
1019
(
1997
).
You do not currently have access to this content.