We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li+ F and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.

1.
M.
Protopapas
,
C. H.
Keitel
, and
P. L.
Knight
,
Rep. Prog. Phys.
60
,
389
(
1997
).
2.
M. F.
Kling
and
M. J. J.
Vrakking
,
Ann. Rev. Phys. Chem.
59
,
463
(
2008
).
3.
F.
Krausz
and
M.
Ivanov
,
Rev. Mod. Phys.
81
,
163
(
2009
).
4.
T.
Horio
,
T.
Fuji
,
Y.-I.
Suzuki
, and
T.
Suzuki
,
J. Am. Chem. Soc.
131
,
10392
(
2009
).
5.
C. Z.
Bisgaard
,
O. J.
Clarkin
,
G.
Wu
,
A. M. D.
Lee
,
O.
Geßner
,
C. C.
Hayden
, and
A.
Stolow
,
Science
323
,
1464
(
2009
).
6.
P.
Hockett
,
C. Z.
Bisgaard
,
O. J.
Clarkin
, and
A.
Stolow
,
Nat. Phys.
7
,
612
(
2011
).
7.
D.
Polli
,
P.
Altoé
,
O.
Weingart
,
K. M.
Spillane
,
C.
Manzoni
,
D.
Brida
,
G.
Tomasello
,
G.
Orlandi
,
P.
Kukura
,
R. A.
Mathies
,
M.
Garavelli
, and
G.
Cerullo
,
Nature (London)
467
,
440
(
2010
).
8.
H. J.
Wörner
,
J. B.
Bertrand
,
B.
Fabre
,
J.
Higuet
,
H.
Ruf
,
A.
Dubrouil
,
S.
Patchkovskii
,
M.
Spanner
,
Y.
Mairesse
,
V.
Blanchet
,
E.
Mével
,
E.
Constant
,
P. B.
Corkum
, and
D. M.
Villeneuve
,
Science
334
,
208
(
2011
).
9.
P. M.
Kraus
,
Y.
Arasaki
,
J. B.
Bertrand
,
S.
Patchkovskii
,
P. B.
Corkum
,
D. M.
Villeneuve
,
K.
Takatsuka
, and
H. J.
Wörner
,
Phys. Rev. A
85
,
043409
(
2012
).
10.
Y.
Arasaki
,
K.
Takatsuka
,
K.
Wang
, and
V.
McKoy
,
Phys. Rev. Lett.
90
,
248303
(
2003
).
11.
Y.
Arasaki
,
K.
Takatsuka
,
K.
Wang
, and
V.
McKoy
,
J. Chem. Phys.
119
,
7913
(
2003
).
12.
Y.
Arasaki
,
S.
Scheit
, and
K.
Takatsuka
,
J. Chem. Phys.
138
,
161103
(
2013
).
13.
Y.
Arasaki
,
Y.
Mizuno
,
S.
Scheit
, and
K.
Takatsuka
,
J. Chem. Phys.
141
,
234301
(
2014
).
14.
Y.
Mizuno
,
Y.
Arasaki
, and
K.
Takatsuka
,
J. Chem. Phys.
144
,
024106
(
2016
).
15.
Y.
Arasaki
,
Y.
Mizuno
,
S.
Scheit
, and
K.
Takatsuka
,
J. Chem. Phys.
144
,
044107
(
2016
).
16.
M. J. J.
Vrakking
,
D. M.
Villeneuve
, and
A.
Stolow
,
Phys. Rev. A
54
,
R37
(
1996
).
17.
E.
Neria
and
A.
Nitzan
,
J. Chem. Phys.
99
,
1109
(
1993
).
18.
F. J.
Webster
,
J.
Schnitker
,
M. S.
Friedrichs
,
R. A.
Friesner
, and
P. J.
Rossky
,
Phys. Rev. Lett.
66
,
3172
(
1991
).
19.
O. V.
Prezhdo
and
P. J.
Rossky
,
J. Phys. Chem.
100
,
17094
(
1996
).
20.
A. W.
Jasper
,
M. D.
Hack
,
A.
Chakraborty
,
D. G.
Truhlar
, and
P.
Piecuch
,
J. Chem. Phys.
115
,
7945
(
2001
).
21.
C.
Zhu
,
A. W.
Jasper
, and
D. G.
Truhlar
,
J. Chem. Phys.
120
,
5543
(
2004
).
22.
R.
Valero
,
D. G.
Truhlar
, and
A. W.
Jasper
,
J. Phys. Chem. A
112
,
5756
(
2008
).
23.
J. E.
Subotnik
,
J. Chem. Phys.
132
,
134112
(
2010
).
24.
J. E.
Subotnik
and
N.
Shenvi
,
J. Chem. Phys.
134
,
024105
(
2011
).
25.
S.
Scheit
,
Y.
Arasaki
, and
K.
Takatsuka
,
J. Phys. Chem. A
116
,
2644
(
2012
).
26.
D. J.
Diestler
,
Phys. Rev. A
78
,
033814
(
2008
).
27.
T. J.
Giese
and
D. M.
York
,
J. Chem. Phys.
120
,
7939
(
2004
).
28.
A.
Macias
and
A.
Riera
,
J. Phys. B
11
,
L489
(
1978
).
29.
H.-J.
Werner
and
W.
Meyer
,
J. Chem. Phys.
74
,
5802
(
1981
).
30.
K.
Takatsuka
,
T.
Yonehara
,
K.
Hanasaki
, and
Y.
Arasaki
,
Chemical Theory Beyond the Born–Oppenheimer Paradigm: Nonadiabatic Electronic and Nuclear Dynamics in Chemical Reactions
(
World Scientific
,
Singapore
,
2015
), p.
101
.
31.
M. D.
Feit
,
J. A.
Fleck
, Jr.
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
).
32.
J.
Alvarellos
and
H.
Metiu
,
J. Chem. Phys.
88
,
4957
(
1988
).
33.
D.
Neuhasuer
and
M.
Baer
,
J. Chem. Phys.
90
,
4351
(
1989
).
34.
T.
Konishi
and
Y.
Ichioka
,
Opt. Rev.
6
,
507
(
1999
).
35.
K.
Tanimura
,
T.
Konishi
,
Y.
Oshita
,
W.
Yu
,
K.
Itoh
, and
Y.
Ichioka
,
Jpn. J. Appl. Phys.
42
,
7318
(
2003
).
36.
U.
Peskin
and
N.
Moiseyev
,
J. Chem. Phys.
99
,
4590
(
1993
).
37.
K.
Hanasaki
and
K.
Takatsuka
,
Phys. Rev. A
88
,
053426
(
2013
).
38.

Under certain conditions, nuclear wavepackets on the field-dressed ionic potential energy curves transfer back to field-dressed covalent potential energy curves at classical turning points as seen in panel (b3) in Fig. 2. See also Case C in Sec. IV C.

39.

This fact implies that the photon emission from the crossing region is difficult to be observed without the CW driving field.

40.

The reason of the peak missing is explained theoretically in Ref. 14.

You do not currently have access to this content.